ESTIMASI HASIL AIR DARI DAERAH TANGKAPAN AIR DANAU RAWA PENING DENGAN MENGGUNAKAN MODEL INVEST

Nunung Puji Nugroho

Abstract


ABSTRAK

Informasi hasil air dari suatu ekosistem sangat penting dalam pengelolaan sumber daya air. Dalam perencanaan kegiatan konservasi sumber daya air, informasi sebaran spasial hasil air diperlukan untuk menentukan prioritas wilayah terkait dengan alokasi anggaran. Hasil air dari suatu ekosistem atau daerah aliran sungai (DAS) dapat diestimasi dengan menggunakan model hidrologi. Penelitian ini bertujuan untuk mendapatkan informasi tentang hasil air, baik besaran maupun sebaran spasialnya, dari daerah tangkapan air (DTA) Danau Rawa Pening. Hasil air dari lokasi penelitian dihitung dengan menggunakan model hasil air pada InVEST (the Integrated Valuation of Ecosystem Services and Tradeoffs), yang didasarkan pada pendekatan neraca air. Hasil perhitungan menunjukkan bahwa volume hasil air di DTA Danau Rawa Pening pada tahun 2015 adalah sekitar 337 juta m3. SubDAS Galeh, sebagai subDAS terluas, merupakan penghasil air terbesar (72,4 juta m3) diikuti oleh subDAS Sraten (66,8 juta m3) dan Parat (62,4 juta m3). Secara spasial, hasil air di lokasi kajian mempunyai nilai antara 0 hingga 29.634,19 m3/ha. Wilayah hulu dan tengah subDAS Sraten secara umum mempunyai hasil air yang lebih tinggi, sedangkan wilayah danau dan sekitarnya serta hulu subDAS Galeh mempunyai hasil air yang lebih rendah dibandingkan dengan wilayah lainnya. Wilayah dengan hasil air tinggi dapat diprioritaskan dalam kegiatan konservasi sumber daya air untuk mendukung pasokan air ke Danau Rawa Pening.

Kata kunci: hasil air, daerah tangkapan air, model InVEST, Danau Rawa Pening

ABSTRACT

Accurate information on water yield from an ecosystem is very important in the management of water resources. In the planning of water resources conservation activities, the information on the spatial distribution of water yield is needed to determine regional priorities related to budget allocations. The water yield from an ecosystem or watershed can be estimated using a hydrological model. This study aimed to obtain information about the water yield, both the magnitude and their spatial distribution, from the catchment areas of Lake Rawa Pening. The water yield from the study area was calculated using the water yield model in InVEST (the Integrated Valuation of Ecosystem Services and Tradeoffs), which based on the water balance approach. The results indicated that the volume of water yield in Lake Rawa Pening for 2015 is approximately 337 million m3. Galeh subwatershed, as the largest subwatershed, is the largest water producer (72.4 million m3), followed by Sraten subwatershed (66.8 million m3) and Parat subwatershed (62.4 million m3). Spatially, the water yield at the study site has a value between 0 to 29,634.19 m3/ha. Upstream and middle areas of Sraten subwatershed generally have higher water yield, while the lake and its surrounding areas as well as the upstream of Galeh subwatershed have lower water yield compared to other regions. The regions with high water yield can be prioritized in water resource conservation activities to support the supply of water to Lake Rawa Pening.

Keywords: water yield, catchment areas, InVEST model, Lake Rawa Pening


Full Text:

PDF

References


Agus, F., van Noordwijk, M., dan Rahayu, S. (Editor). (2004). Dampak hidrologis hutan, agroforestri, dan pertanian lahan kering sebagai dasar pemberian imbalan kepada penghasil jasa lingkungan di Indonesia. Prosiding Lokakarya di Padang/Singkarak, Sumatera Barat, Indonesia, 25-28 Pebruari 2004: ICRAF-SEA, Bogor, Indonesia.

Allen, R. G., Pereira, L. S., Raes, D., dan Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).

Apriliyana, D. (2015). Pengaruh perubahan penggunaan lahan SubDAS Rawapening terhadap erosi dan sedimentasi Danau Rawapening. Jurnal Pembangunan Wilayah dan Kota, 11(1), 103-116.

Arunyawat, S., dan Shrestha, R. (2016). Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability, 8(8), 768: 761-722.

Baskoro, D. P. T., dan Tarigan, S. D. (2007). Karakteristik kelembaban tanah pada beberapa jenis tanah. Jurnal Tanah dan Lingkungan, 9(2), 77-81.

Bhagabati, N., Barano, T., Conte, M., Ennaanay, D., Hadian, O., McKenzie, E., Olwero, N., Rosenthal, A., Suparmoko, Shapiro, A., Tallis, H., dan Wolny, S. (2012). Visi Hijau untuk Sumatera: Menggunakan informasi jasa ekosistem untuk membuat rekomendasi rencana peruntukan lahan di tingkat provinsi dan kabupaten (pp. 152): The Natural Capital Project, WWF-US, dan WWF-Indonesia.

Bhagabati, N. K., Ricketts, T., Sulistyawan, T. B. S., Conte, M., Ennaanay, D., Hadian, O., McKenzie, E., Olwero, N., Rosenthal, A., Tallis, H., dan Wolny, S. (2014). Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biological Conservation, 169, 147-156.

Bigas, H. (2013). Water security and the global water agenda: A UN-Water analytical brief (pp. 47). Ontario, Canada: UN-Water, United Nations University - Institute for Water, Environment and Health (UNU-INWEH).

Budyko, M., dan Miller, D. H. (1974). Climate and life. New York: Academic Press.

Crundwell, M. E. (1986). A review of hydrophite evapotranspiration. Revue d'Hydrobiologie Tropicale, 19(3-4), 215-232.

Dirjen RLPS. (2009). Peraturan Dirjen RLPS No. P.04/V-SET/2009 tentang Pedoman Monitoring dan Evaluasi Daerah Aliran Sungai (Lampiran) (pp. 89). Jakarta: Direktorat Jenderal Rehabilitasi Lahan dan Perhutanan Sosial (Ditjen RLPS), Kementerian Kehutanan.

Donohue, R. J., Roderick, M. L., dan McVicar, T. R. (2012). Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436-437, 35-50.

Droogers, P., dan Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1), 33-45.

Du, C., Sun, F., Yu, J., Liu, X., dan Chen, Y. (2016). New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrology and Earth System Sciences, 20(1), 393-409.

Fardani, L. (2011). Struktur dan tekstur tanah. Cited in http://gerrard08dhanfar.blogspot.co.id/2011/11/struktur-dan-tekstur-tanah.html. [12 November 2016].

Geng, X., Wang, X., Yan, H., Zhang, Q., dan Jin, G. (2015). Land use/land cover change induced impacts on water supply service in the upper reach of Heihe River Basin. Sustainability, 7, 366-383.

Hamel, P., dan Guswa, A. J. (2015). Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19(2), 839-853.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., dan Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978.

KLH. (2011). Profil 15 danau prioritas nasional 2010-2014. Jakarta: Kementerian Lingkungan Hidup (KLH).

Machbub, B., Suwanto, A., Harahap, T. N., Manurung, H., Retnowati, I., Rachmiati, S., dan Rustadi, W. C. (2012). Daya tampung beban pencemaran air dan zonasi Danau Rawa Pening (pp. 80). Jakarta: Kementerian Lingkungan Hidup.

Murasa, H., Sumono, dan Ichwan, N. (2016). Kajian penyebaran air di daerah perakaran pada beberapa jenis tanah dan tanaman dalam skala laboratorium. Jurnal Rekayasa Pangan dan Pertanian, 4(1), 102-108.

Nugroho, S. P. (2015). Relevansi meningkatnya bencana hidrometeorologi terkait kerusakan DAS di Indonesia. Paper presented at the Seminar Nasional Restorasi DAS: Mencari Keterpaduan di Tengah Isu Perubahan Iklim, Surakarta, 25 Agustus 2015.

Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., dan Pascual, M. (2015). Getting water right: A case study in water yield modelling based on precipitation data. Science of The Total Environment, 537, 225-234.

Purboseno, S. (2013). Evaluasi perubahan tata guna lahan sebagai upaya menjaga kerbelanjutan fungsi waduk. Media Komunikasi Teknik Sipil, 19(2), 167-174.

Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T. H., dan Bullock, J. M. (2016). Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of The Total Environment, 569–570, 1418-1426.

Saad, S. I., Mota da Silva, J., dan Rocha, H. R. (2016). The impact of roads and sediment basins on simulated river discharge and sediment flux in an experimental catchment designed to improve ecosystem services. Hydrology and Earth System Sciences Discussions, 2016, 1-50.

Saxton, K. E. (2009). Soil Water Characteristics: Hydraulic properties calculator. Cited in https://hrsl.ba.ars.usda.gov/soilwater/Index.htm. [6 Juni 2015].

Saxton, K. E., dan Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70, 1569-1578.

Sharp, R., et al. (2015). InVEST 3.1.3 user’s guide. Stanford, USA: The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

Soeprobowati, T. R. (2012). Peta batimetri Danau Rawapening. Bioma, 14(2), 78-84.

Suardi, D. (2002). Perakaran padi dalam hubungannya dengan toleransi tanaman terhadap kekeringan dan hasil. Jurnal Litbang Pertanian, 21(3), 100-108.

Tallis, H. T., Ricketts, T., Guerry, A. D., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., dan Bernhardt, J. (2011). InVEST 2.0 beta user’s guide. Stanford, USA: The Natural Capital Project.

USDA. (2009). Chapter 20 Watershed Yield. Part 630 Hydrology--National Engineering Handbook (pp. 29): United States Department of Agriculture (USDA).

Van Paddenburg, A., Bassi, A., Buter, E., Cosslett, C., dan Dean, A. (2012). Heart of Borneo: Investing in nature for a green economy: WWF Heart of Borneo Global Initiative, Jakarta.

WAVES. (2015). Managing catchments for hydropower services Technical Report (pp. 95): Wealth Accounting and the Valuation of Ecosystem Services (WAVES) India.

Yang, H., Yang, D., Lei, Z., dan Sun, F. (2008). New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 44(W03410), 1-9.

Yoshida, S., dan Hasegawa, S. (1982) The food system: its development and function. In: IRRI Drought Resistance in Crops with Emphasis on Rice (pp. 97-114). Manila, Phillipines: International Rice Research Institute (IRRI).

Yu, J., Yuan, Y., Nie, Y., Ma, E., Li, H., dan Geng, X. (2015). The temporal and spatial evolution of water yield in Dali County. Sustainability, 7, 6069-6085.

Zhang, C., Li, W., Zhang, B., dan Liu, M. (2012). Water yield of Xitiaoxi River Basin based on InVEST modeling. Journal of Resources and Ecology, 3(1), 050-054.

Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., dan Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40(W02502), 1-14.




DOI: http://dx.doi.org/10.24895/MIG.2017.19-2.578

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 MAJALAH ILMIAH GLOBE

Majalah Ilmiah Globe Indexed by:

 

Copyright of Majalah Ilmiah Globe

Creative Commons License