KARAKTERISTIK KONSENTRASI CH4 (METANA) DI BEBERAPA KOTA BESAR DAN KOTA KECIL DI INDONESIA

Indah Susanti, Lilik Slamet S, Waluyo Eko Cahyono

Abstract


ABSTRAK

Keberadaan konsentrasi CH4 di atmosfer berasal dari sumber emisi CH4 di permukaan bumi baik asal antropogenik maupun alami. Bobot molekul CH4 yang ringan mengakibatkan CH4 dapat bergerak vertikal sampai ke stratosfer. Konsentrasi CH4 yang tak terkendali berakibat pada pemanasan global dan perubahan iklim, sehingga perlu dipahami karakteristik CH4 terutama di beberapa kota besar (Jakarta, Medan, Makassar) dan kota kecil (Ambon, Biak Numfor, Pangkal Pinang) di Indonesia. Dengan menggunakan data Atmospheric Infra Red Soundings (AIRS) level 3 yang memiliki resolusi spasial satu derajat dan resolusi temporal bulanan, untuk periode waktu 2003-2015, dikaji kecenderungan konsentrasi CH4 di enam kota  dan anomalinya pada beberapa ketinggian atmosfer serta analisis pengaruh kategori kota (kota besar dan kota kecil berdasarkan jumlah penduduk) terhadap konsentrasi CH4. Metode yang digunakan pada penelitian ini adalah analisis spasial horizontal dan vertical dengan bantuan Software Grads untuk mengetahui daerah mana dan pada level ketinggian mana terjadi perubahan konsentrasi CH4, serta ditunjang oleh analisis statistik regresi dan uji Friedman serta uji Tukey untuk mengetahui apakah ada pengaruh kategori kota terhadap konsentrasi CH4 di atmosfer. Hasilnya menunjukkan adanya penurunan konsentrasi CH4 terhadap ketinggian atmosfer dengan pola logaritmik (eksponensial) yang sebagian besar berasal dari kegiatan di permukaan bumi. Fluktuasi konsentrasi CH4 di atmosfer disebabkan salah satunya oleh El Nino Southern Oscilation (ENSO). Kondisi ini tampak dari kesamaan pola nilai indeks ENSO dan konsentrasi CH4. Berdasarkan penelitian dengan menggunakan uji Friedman dan uji Tukey dihasilkan bahwa klasifikasi kota menjadi kota besar dan kota kecil tidak berpengaruh pada konsentrasi CH4.

Kata kunci: profil, metana, AIRS, statistik, klasifikasi, kota

ABSTRACT

Concentration of CH4 in the atmosphere comes from the source of CH4 emissions on the earth's surface either natural or anthropogenic activities. The light molecular weight resulting CH4  can move vertically up into the stratosphere. Unbridled CH4 concentration resulted in global warming and climate change. So, it’s important to understand CH4 characteristics, especially in large cities (Jakarta, Medan, Makassar) and small towns (Ambon, Biak Noemfoor, Pangkal Pinang) in Indonesia. Using data Atmospheric Infra Red Soundings (AIRS) level 3 which has a spatial resolution of one degree and monthly temporal resolution, for time period from 2003 to 2015, we analyzed the tendency of concentration of CH4 in 6 cities  and its anomalies in some altitude atmosphere as well as analysis of the influence of the city category (cities and towns based on population) towards the CH4 concentration. The method used in this research is the analysis of spatial horizontal and vertical using Grads to know region and altitude levels which have change the concentration of CH4. In additon, supported by statistical regression analysis and Friedman test and Tukey test to determine whether there is any relation between  city category against concentration of CH4 in the atmosphere. The results indicate a decrease in the height of atmospheric CH4 concentrations with  the pattern of logarithmic (exponential) is mostly derived from activities in the Earth's surface. Fluctuations in the concentration of CH4 in the atmosphere caused among other is by El Nino Southern Oscilation (ENSO). This condition appears on the similarities of the ENSO index values and CH4 concentrations. Based on research by using the Friedman test and Tukey's test result that classification of  cities and towns has no effect on the concentration of CH4.

Keywords: profile, CH4, AIRS, statistic, classification, city 


Keywords


profil, metana, AIRS, statistik, klasifikasi, kota

Full Text:

PDF

References


Badan Pusat Statistik. (2014). Statistik Indonesia. Badan Pusat Statistik. Jakarta.

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C., (2010). Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data, Science, 327, 322–325, doi:10.1126/science.1175176.

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J.(2006). Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439– 443, doi:10.1038/Nature05132.

Bräunlich, M., O. Aballain, T. Marik, P. Jockel, C.A.M. Brenninkmeijer, J. Cjappellaz, JM. Barnola, R. Mulvaney, and W.T. Sturges. (2001). Changes in global atmospheric methane budget over the last decades inferred from 13C and D isotopic analysis of Antarctic firn air. Journal of Geophisical Research, 106(17) 20.465-20.481.

Chen, Y. H. and Prinn, R. G. (2006). Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, J. Geophys. Res.-Atmos., 111, D10307, doi:10.1029/2005JD006058.

Cicerone, R. J. and Oremland, R. S. (1988). Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cy. 2, 299–327.

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.(2007). Couplings Between Changes in the Climate System and Biogeochemistry, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Dlugokencky E.J., Bruhwiler L, White J.W.C., Emmons L.K., Novelli P.C., Montzka S.A. (2009). Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36: L18803.

Gaspersz, V. (1991). Metode Perancangan Percobaan. Armico. Bandung.

Ghosh, A., P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krumme, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa. (2015). Variations in global methane sources and sinks during 1910–2010. Atmos. Chem. Phys., 15, 2595–2612. doi:10.5194/acp-15-2595-2015.www.atmos-chem-phys.net/15/2595/2015/

Gusnita, D. dan I. Sofiati. (2013). Fluktuasi Metan (CH4) Selama Kejadian El Nino/La Nina Di Indonesia. Proseding Seminar Nasional Penelitian Masalah Lingkungan di Indonesia, IATPI, Hotel Garuda Medan, 13 Juni 2013.

IPCC. (2013). In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J (eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, p 1535.

Isaksen, I.S.A., T.K. Berntsen, S.B. Dalsøren, K. Eleftheratos, Y. Orsolini, B. Rognerud, F. Stordal, O.A. Søvde, C. Zerefos, and C.D. Holmes. (2014). Atmospheric Ozone and Methane in a Changing Climate. Atmosphere 2014, 5, 518-535; doi:10.3390/atmos5030518, ISSN 2073-4433, www.mdpi.com/journal/atmosphere.

Jones, R. L. and Pyle, J. A. (1984). Observations of CH4 and N2O by the Nimbus-7 SAMS: a comparison with in situ data and two dimensional numerical model calculations. J. Geophys. Res., 89, 5263–5279.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. a., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G. (2013). Three decades of global methane sources and sinks, Na. Geosci., 6, 813–823, doi:10.1038/ngeo1955.

Levieveld, J., P.J. Crutzen, and F.J. Dentener. (1998). Changing concentration, lifetimes and climate forcing of atmospheric methane, Tellus, 50, 128-150.

Mazi`ere, M.D., C. Vigouroux, P. F. Bernath, P. Baron, T. Blumenstock, C. Boone, C. Brogniez, V. Catoire,M. Coffey, P. Duchatelet, D. Griffith, J. Hannigan, Y. Kasai, I. Kramer, N. Jones, E. Mahieu,G. L. Manney, C. Piccolo, C. Randall, C. Robert, C. Senten, K. Strong, J. Taylor, C. T´etard,K. A. Walker, and S. Wood. (2008). Validation of ACE-FTS v2.2 methane profiles from the uppertroposphere to the lower mesosphere. Atmos. Chem. Phys., 8, 2421–2435. www.atmos-chem-phys.net/8/2421/2008/

Pawitan, H. (1989). Termodinamika Atmosfer. Pusat Antar Universitas Ilmu Hayat. IPB Press. Bogor.

Quirk, T. (2010). Twentieth Century Sources of Methane in the Atmosphere, Document of 43rd Seminar on Planetary Emergencies, World Federation of Scientists, 19-24 August 2010, Institute of Public Affairs- Melbourne, Australia, pp 365-374.

Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. (2009). Improved attribution of climate forcing to emissions. Science 326: 716–718.

Slamet, L. (2014). Potensi Emisi Metana (CH4) Ke Atmosfer Akibat Banjir. Berita Dirgantara, 15(1), Juni 2014.

Spahni, R.,Wania, R., Neef, L., vanWeele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P. (2011). Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, doi:10.5194/bg-8-1643-2011.

Warneck. (1988). In Climate Science of Methane, Chapter II. www.ourenergypolicy.org/up-content/upload/2013/10/chapter02.pdf.

Wuebbles, D. J. and Hayhoe, K. (2002). Atmospheric methane and global change, Earth Sci. Rev., 57, 177–210.




DOI: http://dx.doi.org/10.24895/MIG.2017.19-2.619

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 MAJALAH ILMIAH GLOBE

Majalah Ilmiah Globe Indexed by:

 

Copyright of Majalah Ilmiah Globe

Creative Commons License