
Monitoring Benthic Habitat Using Sentinel 2 MSI Images With Lyzenga Model Features And Machine ..................... (Aldiansyah & Risna) 

49 

MONITORING BENTHIC HABITAT USING SENTINEL-2 MSI IMAGES 
WITH LYZENGA MODEL FEATURES AND MACHINE LEARNING IN 

WANGI-WANGI ISLANDS 

(Pemantauan Habitat Bentik Menggunakan Citra Sentinel-2 MSI dengan Fitur Model 
Lyzenga dan Machine Learning di Kepulauan Wangi-Wangi) 

Septianto Aldiansyah1,2, Risna3 
1Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia 

2Department of Geography Education, Faculty of Teacher Training and Education, Universitas Halu Oleo 
3Department of Microbiology, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor 

E-mail: septiantoaldiansyah863@gmail.com  

Diterima: 18 Januari 2025; Direvisi: 23 Maret 2025; Disetujui untuk Dipublikasikan: 24 April 2025 

ABSTRACT 

Monitoring benthic habitats becomes more difficult when physical visits to sites are required by diving. 
This is considered to require greater resources and time. This research adopts Sentinel 2 MSI imagery to 
monitor benthic habitat in the Wangi-Wangi Islands, Indonesia. This research uses the Lyzenga model to 
extract depth invariant index features on the Google Earth Engine (GEE) API to classify benthic environments. 
Three Machine Learning algorithms are applied, such as Support Vector Machine (SVM), Random Forest (RF), 
and Classification and Regression Trees (CART), in classifying supervised benthic habitats based on training 
classes selected under the guidance of an initial K-means unsupervised classification. RF has better overall 
accuracy than SVM and CART in 2019 and 2023, namely 94.41% and 97.45%, respectively. This research 
found significant changes between coral, seagrass, and sand due to high environmental and anthropogenic 
pressure. The use of MSI's Sentinel 2 imagery and the GEE cloud computing platform is very helpful in 
monitoring and collecting marine data. 

Keywords: Benthic, Google Earth Engine, Lyzenga, Random Forest, Sentinel 2 MSI 

ABSTRAK 

Pemantauan habitat bentik menjadi lebih sulit ketika harus melakukan kunjungan fisik ke lokasi dengan 
penyelaman. Hal ini dinilai membutuhkan sumber daya dan waktu yang lebih besar. Penelitian ini mengadopsi 
citra Sentinel 2 MSI untuk memantau habitat bentik di Kepulauan Wangi-Wangi, Indonesia. Penelitian ini 
menggunakan model Lyzenga dalam mengekstraksi deepth invariant index feature pada Google Earth Engine 
(GEE) API untuk mengklasifikasi lingkungan bentik. Tiga algoritma Machine Learning diterapkan seperti 
Support Vectore Machine (SVM), Random Forest (RF) dan Classification and Regression Trees (CART) dalam 
mengklasifiasi habitat bentik yang diawasi berdasarkan kelas pelatihan yang dipilih di bawah panduan of an 
initial K-means unsupervised classification. RF memiliki overall accuracy yang lebih baik dibandingkan SVM 
dan CART pada tahun 2019 dan 2023 yaitu masing-masing 94.41% dan 97.45%. Penelitian ini menemukan 
adanya perubahan yang signifikan antara coral, seagrass dan sand akibat tekanan lingkungan dan 
antropogenik yang tinggi. Penggunaan citra Sentinel 2 MSI dan platform cloud computing GEE sangat 
membantu dalam pemantauan dan pengumpulan data kelautan. 

Kata Kunci: Bentik, Google Earth Engine, Lyzenga, Random Forest, Sentinel 2 MSI 
 
INTRODUCTION 

Benthic refers to low-level ecological areas that 
occur at the bottom of water (NOAA, 2018). Benthic 
habitats are underwater ecological areas where 
animals and plants thrive on the bottom or surface 
of the water. The main focus of most studies stated 
that corals, seagrasses, and mangroves are the 
habitat for marine life. Shallow coral reefs, seagrass 
beds, and mangrove forests are said to be the main 
nursery biotopes for fish species (Nagelkerken et 
al., 2000). A complex structural composition for 
biotopes supports this situation to hide from 
predators (Bell & Westoby, 1986), which in turn also 
plays an important role in influencing the genetic 

diversity of marine populations, as seen in the 
influence of lagoons in coastal areas on its diversity 
(Pérez-Ruzafa et al., 2019). Coral polyps, also 
known as "marine rainforests," play an important 
role in building coral reefs. Coral reefs, which are 
home to various marine species, only occupy 0.1% 
of the ocean area. This percentage is inversely 
proportional to the number of marine species that 
use coral reefs as habitat, which reaches 25%. This 
shows the importance of the existence of coral 
reefs. Despite this, benthic environments have been 
threatened by anthropogenic activities. 

Anthropogenic activities contribute to marine 
degradation quite significantly compared to other 
activities. About 10% of the world's total population 
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(600 million people) is known to live in coastal areas 
with an altitude of <10 meters above sea level. 
Meanwhile, the other 40% of the world's population 
(2.4 billion people) live within a radius of 100 km 
from the coast. Around 37% of the world's global 
population, especially coastal communities, 
consider ocean, coastal, and marine resources to 
be very important (United Nations, 2017). This 
situation can threaten marine ecosystems if these 
marine ecosystems are not protected and managed 
well. In comparison, the rate of degradation of 
marine exosystems is faster than the rate of 
degradation of terrestrial ecosystems, while 
underwater observations have only begun recently 
(Knowlton & Jackson, 2008). Therefore, monitoring 
benthic habitats is important to improve 
conservation efforts. 

Benthic habitat monitoring can be carried out 
using multispectral remote sensing imagery by 
integrating the Lyzenga model in extracting 
features. The study conducted by Vanderstraete et 
al. (2006) used Landsat imagery to map seabed 
types from 1987 to 2000 near Hurghada, Egypt. 
Pahlevan et al. (2006) also conducted a study using 
IKONOS imagery equipped with bathymetric data to 
extract benthic maps on Kish Island in the Persian 
Gulf. Nieto's (2013) study in St. Eustatius studied 
the high-resolution WorldView-2 and Quickbird 
imagery integrated with bathymetric data to classify 
benthic habitats in the Dutch Caribbean. In this 
study, the implementation of the Lyzenga procedure 
still used conventional software to produce benthic 
habitat maps. 

In Indonesia, the use of satellite imagery in 
benthic mapping has been widely explored. A study 
by Wicaksono et al. (2019) on Kemujan Island using 

machine learning with WorldView-2 imagery 
showed that benthic habitats can be identified using 
a more general classification scheme. A study by 
Hamuna et al. (2023) in Wakatobi National Park 
showed that remote sensing data can classify 
benthic habitats quite well. Benthic mapping in the 
Wangi-Wangi Islands had been identified previously 
but in a very limited area (Matsu et al., 2018). 

This study used a Google Earth Engine (GEE) 
approach in mapping benthic habitats in the center 
of coral reef biodiversity or what is known as the 
Coral Triangle Initiative from 2019 to 2023 based on 
the Sentinel 2 MultiSpectral Instrument (MSI) 
archive. This study calculated the Lyzenga depth 
variance index feature from Sentinel 2 MSI imagery 
to classify benthic habitats. This research adopted 
K-means unsupervised classification to help collect 
training data. Then, supervised mapping was 
carried out using the Machine Learning Support 
Vector Machine (SVM), Random Forest (RF), and 
Classification and Regression Trees (CART) 
algorithms. 

METHODS 

Study Area 

This research was conducted in the Wangi-
Wangi Islands, Wakatobi, Southeast Sulawesi 
(Figure 1). The Wangi-Wangi Islands are located in 
the Coral Triangle and are known as the second-
largest coral reef in the world. The region has 942 
fish species and 750 of the world's 850 coral reef 
species. This research location is located at 5o14'13 
S - 5o33'48" S and 123o27'14" E - 123o39'7" E, with 
an area of 596.47 km2. 

 

 
Figure 1. The study was located in Wangi-Wangi Islands.  
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Data 

Benthic habitat samples were determined 
from satellite image interpretations that had been 
adjusted to field survey results and published 
habitat distribution location documents. 
Approximately 212 locations were recorded using 
a Garmin Global Positioning System (GPS) placed 
in a waterproof dry bag. The collected samples 
were then recorded as randomly placed points. 
Each point was labeled based on the benthic 
habitat class. 

This study used the Sentinel 2 MSI image 
collection from Google Earth Engine (GEE). This 
image collection had a wide coverage and high 
resolution, which supported land and water cover 
studies as well as observations of inland 
waterways and coastal areas. This image 
collection had the highest radiometrically and 
geometrically corrected quality level called Level-
1C (L1C). The L1C product contained 
atmospheric scale ortho-rectification (TOA) 
reflectance that was more responsive to relative 
spectra (ESA, 2017). Therefore, this product was 
suitable for time series analysis. This research 
used a median composite cloud-free from the 
image collection (Aldiansyah et al., 2021; 
Aldiansyah & Saputra, 2023) for each year from 
2019-2023. This aimed to obtain good 
classification results because the presence of 
clouds and cloud shadows can worsen the 
separation of pixel values from image data. 

Feature Extraction 

This research used the Lyzenga model 
(Lyzenga, 1978) to extract features for 
classification. The Lyzenga model worked by 
connecting bottom surface reflectance and 
radiance levels measured by satellite sensors. 
This feature was obtained from the band pairs of 
the visible bands (blue, green, and red) of Sentinel 
2 MSI. 

Pixels at the same bottom type were located 
at various unknown depths that appeared along 
the lines in the bi-dimensional histogram of a pair 
of log-transformed visible bands. The slope of this 
line was the ratio of diffuse attenuation of the two 
bands. This step was repeated for different 
features, and then a series of parallel lines were 
plotted, with each bottom-type difference and 
variation in y-intercepts. 

Lyzenga's model involved the extraction of 
the radiance of areas occupied by the same 
feature regardless of the depth at which they 
occur. In this study, sand was preferred because 
of its clear visibility. This occurred because there 
was a decrease in the attenuation coefficient in 
various combinations and calculation of the 
attenuation ratio before the final computation of 
three single-band Depth Invariant Index (DII) 
images as Formula 1. 

𝐷𝐼𝐼 =  𝑙𝑛(𝐿𝑖)  −  [(
𝑘𝑖

𝑘𝑗
)  ×  𝑙𝑛(𝐿𝑗)]……………………….(1) 

where 𝐿𝑖 is the observed radiance of band 𝑖 and 𝐿𝑗 

is the observed radiance of band 𝑗. The irradiance 

attenuation coefficient (
𝑘𝑖

𝑘𝑗
) of water in bands 𝑖 and 

𝑗 is computed as Formula 2 and Formula 3. 

𝑘𝑖

𝑘𝑗
 =  𝑎 + √(𝑎2  +  1)…………………………….…….(2) 

𝑎 =  
𝜎𝑖𝑖− 𝜎𝑗𝑗

2 × 𝜎𝑖𝑗
……………………………………..………..(3) 

where  

𝜎𝑖𝑖 is the variance of band 𝑖, 𝜎𝑗𝑗 corresponds 

to the variance of band 𝑗, and 𝜎𝑖𝑗the co-variance 

of the band pair 𝑖, 𝑗. 
The procedure used to estimate the 

attenuation coefficient ratio to determine the 
average square deviation line. The line was 
measured perpendicular to the line, where the line 
value is the minimum (Lyzenga, 1981). The values 
derived cannot be directly related to the 
corresponding radiance or reflectance (Watkins, 
2015). However, this index was limited in the 
number of bottom features. This is because some 
features had close resemblances and hence were 
defined by the same line, e.g., sand and mud. 

Benthic Habitat Mapping 

This research used 3-band DII features 
obtained from the Lyzenga model. Benthic mapping 
was carried out in three classes (coral, seagrass, 
and sand), which formed the benthic habitat. The 3-
band unsupervised classification feature was 
carried out using K-means by limiting the classes to 
five classes, namely coral, seagrass, sand, water, 
and land. K-means aimed to help in the process of 
partitioning pixels into five classes by assigning 
each pixel to the cluster with the closest means. In 
this way, the output of land cover classes at each 
epoch had five clusters. Next, classes were 
assigned to their respective clusters to create a 
land cover map. This land cover was then used as 
a reference to collect suitable training locations for 
each class using GEE analysis. 

Training data was used to carry out supervised 
classification using SVM, RF, and CART machine 
learning classifications. The land cover produced by 
the supervised classification algorithms was then 
validated using overall accuracy (OA) and kappa 
coefficient (K) values, using a comparison ratio of 
70 for training and 30 for testing. Overall accuracy 
(OA) is commonly used to evaluate the accuracy 
and effectiveness of all classifiers. This accuracy 
worked by grouping the number of pixels that were 
correctly classified by the classifier. (Aldiansyah & 
Saputra, 2023). The OA and K values were 
calculated as Formula 4 and Formula 5. 

 

𝑂𝐴 =  (
𝑃𝑐

𝑃𝑛
)  ×  100…………………………..…………..(4) 



Majalah Ilmiah Globe Volume 27 No.1 April 2025: 49-56 

52 

Where 𝑃𝑐 is the number of pixels classified correctly 

and 𝑃𝑛 is the total number of pixels. 

 

𝐾 =  
𝑁 ∑ 𝑥𝑖𝑖− ∑ (𝑥𝑖+ 𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ 𝑥+𝑖)𝑟
𝑖=1

………………………………..(5) 

 

Where 𝑟 = the number of rows and columns in the 

error matrix, 𝑥𝑖𝑖 = the number of observations in row 

𝑖 and column 𝑖, 𝑥𝑖+ = the marginal total of row 𝑖, 𝑥+𝑖 

=  the marginal total of column 𝑖, and 𝑁 = the total 

number of observations. 
User Accuracy (UA) and Producer Accuracy 

(PA) were also calculated for each land cover class 
in the Confusion matrix. Validation with UA was 
determined by the ratio of the correctly categorized 
pixels in that class to the total number of pixels 
classified. Similarly, PA was determined by the ratio 
of properly categorized pixels to the total number of 
pixels in the reference data in each class. The 
classifier that had the best performance was 
selected for further image classification for 
Spatiotemporal change analysis. The entire flow of 
this research is summarized in Figure 2. 

RESULT AND DISCUSSION 

Benthic Habitat Change 

Based on Figure 2, the 2019 SVM is seen 
incorrectly classifying 64% of coral reef pixels as 
seagrass. The same thing was also shown by the 
Water class, where around 88% of water pixels 
were classified as coral reefs, while 12% were 
classified as seagrass. This is also shown by RF 
and CART, but with a significantly smaller error ratio 
compared to SVM. In Figure 3, the same thing is 
also shown in 2023 in the SVM classifier. However, 
RF showed an extraordinary performance where 
only 13% of water pixels were classified as coral 
reefs, while CART classified 24% of water as coral 
reefs (Figure 4). 

The three classifiers show differences. The 
SVM classifier performed worse than the other 
classifiers. Meanwhile, RF performed better than 
the others. Therefore, this study adopted the results 
of the RF classifier to quantify changes in benthic 
habitat. Based on the RF classifier, a change in 
habitat category was visible. There was a significant 
decrease in seagrass cover from 2019 to 2023 for 
about 58.21 km2. Sand also decreased that year by 
9.26 km2. However, this research revealed an 
expansion of coral habitat of 76.27 km2. This finding 
was also similar to that reported by Chairunnisa et 
al. (2022). The dynamics of changes in this category 
are depicted in Figure 5. 

 
Figure 2. Research flow adopted in classifying benthic habitat. 
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Figure 3. Benthic habitat in 2019 based on (a) SVM; (b) RF; and (c) CART. 

 

 
Figure 4. Benthic habitat in 2023 based on (a) SVM; (b) RF; and (c) CART. 
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Figure 5. Dynamics of benthic habitat changes based on SVM, RF, and CART. 

 
 Coral reef and seagrass fluctuations could be 

triggered by the presence of corals that inhabit non-
coral reef areas due to variability in the habitat 
environment, which was considered less than 
optimal. Scleractinian corals are known to inhabit 
seagrass beds despite environmental variability. 
However, in general, coral diversity and richness in 
this area were lower than in coral reef areas (Lohr 
et al., 2017). 

The results of this study indicate that there is 
an increase in coral reefs while sand actually 
decreases around the habitat. The increase in coral 
reefs can occur due to ecosystem restoration 
efforts, changes in environmental conditions, and 
reduced human activities. In Wangi-Wangi, factors 
such as stable water temperatures, supportive 
depths, and good water clarity greatly contribute to 
the success of healthy coral reef growth. These 
conditions support photosynthesis by 
zooxanthellae, which is very important for coral 
survival. Existing publications and reports, such as 
those published by the Wakatobi Marine Research 
Center, WWF Indonesia, and the World Resources 
Institute (WRI), confirm that the Wangi-Wangi area 
has ideal conditions for coral reef ecosystems, 
thanks to good conservation management and 
supportive environmental conditions (Napitupulu et 
al., 2022; Leprohon & Nimick, 2023). 

Poor water quality can inhibit light penetration, 
and this situation worsens the condition of seagrass 
in this habitat. This condition may influence the 
decline in seagrass areas in this region. Dredging 
that occurred near coral reef areas and accelerated 
runoff of eroded soil increased turbidity, which then 
had an impact on reducing the availability of light for 
photosynthesis processes (Rogers, 1990).  

Another case showed that fishing activities 
using bombs also influenced benthic distribution in 
this area. According to Yulius et al. (2015) and 
Jerosch et al. (2016), the form of the environment 
indirectly influences the fluctuation of benthic 
distribution and its environmental conditions, for 

example, substrate, erosion or sedimentation, 
currents, and nutrient abundance. 

Comparison of Classification Performance 

In addition, the Confusion matrix, UA and PA 
were adopted in this study to measure the 
performance of each class of each classifier. The 
model with the best performance was selected 
based on the OA and K values. The SVM, RF, and 
CART classifiers are compared in Table 1, while 
Figure 4 shows the UA and PA in each benthic 
habitat class. 

Tabel 1. Overall accuracy and kappa coefficient values 
for benthic habitat categories based on SVM, 
RF, and CART. 

Year SVM RF CART 

OA k OA k OA k 

2019 78.77 72.30 94.41 92.94 95.53 94.35 
2023 77.71 71.16 97.45 95.30 94.48 92.05 

 

Based on Table 1, the RF classifier 
outperforms the other two classifiers. The OA 
values in 2019 and 2023 reached 94.41% and 
97.30%, respectively. The UA and PA values for 
each class are presented in Figure 6. The three 
classifiers were able to extract Land, Seagrass, and 
Sand very well. It can be seen that SVM had 
difficulty in identifying water bodies effectively. This 
can be caused by the number of pixels being quite 
small, so it was not enough to train the classifier 
accurately and only produced poor performance 
when compared to other classes. The accuracy 
value of CART was close to RF in quantitative 
terms, but the classification and visual results 
showed that RF's capabilities were no less superior. 
However, with limited reference sources, this study 
found that RF showed good performance in 
mapping other classes compared to CART and 
SVM. This finding was also reported by Bennet et 
al. (2020), Ahmed et al. (2021), Cheng et al. (2022), 
and Aldiansyah & Wahid (2023) that RF has good  

2019 2023 2019 2023 2019 2023

SVM RF CART

Sand 13,39 10,80 19,07 9,81 19,08 9,51

Coral 48,44 55,15 11,04 87,30 11,47 16,27

Water 5,01 - 52,02 39,36 53,85 54,28

Land 190,63 189,24 185,90 189,77 184,29 190,27

Seagrass 338,99 341,28 328,44 270,23 327,78 326,14
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(a) (b) 

  

(c) (d) 
Figure 6. Benthic habitat category accuracy values based on SVM, RF, and CART for user accuracy (a and c) and 

producer accuracy (b and d). 

 
accuracy for mapping habitat distribution. The 

accuracy of the resulting RF model is quite high in 
rapid mapping. This accuracy is also within the 
acceptable limit in benthic habitat mapping with a 
four to five-class scheme. The tolerable limit is 40-
70% (Green et al., 2000) and >60% based on the 
Indonesian National Mapping Standard (Badan 
Informasi Geospasial, 2014).  

On the other hand, it is quite difficult to 
compare our results with similar studies, 
considering that the schemes used tend to be 
different and unique. The thirteen-class scheme 
showed 40% accuracy when using the PC band 
(Wicaksono, 2016). The scheme with hyperspectral 
data showed >80% accuracy when the number of 
classes was in the range of three to 12 classes 
(Zhang et al., 2013). The ten-class scheme with 
high-resolution imagery showed 73% accuracy 
(Eugenio et al., 2015). Although our results show 
high accuracy, the results may be lower or the same 

when tested with varying scheme complexity. 

CONCLUSION  

Benthic distribution mapping was successfully 
carried out in GEE for the Wangi-Wangi Islands 
region with acceptable accuracies. This research 
showed that monitoring changes in benthic habitats 
can utilize remote sensing technology. Our results 
show that the RF method has better accuracy than 
the other two classifiers with a five-class scheme. 
We suggest exploring different schemes to test the 
accuracy of the method if the treatment is different. 
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