KOMPARASI DATA DIGITAL ELEVATION MODEL (DEM) RESOLUSI MENENGAH DALAM MENGESTIMASI KETINGGIAN LAHAN DI KABUPATEN MANOKWARI PROVINSI PAPUA BARAT
DOI:
https://doi.org/10.24895/gl.2024.26.1.11-20Keywords:
ASTER Global DEM, Copernicus Digital Elevation Model, DEM, Jaxa’s Global ALOS 3D World, SRTMAbstract
Saat ini telah tersedia data Digital Elevation Model (DEM) dalam berbagai resolusi, yaitu resolusi rendah hingga resolusi tinggi. Pada umumnya data DEM tersebut memiliki akurasi yang baik dalam mengestimasi ketinggian suatu lahan. Penelitian ini bertujuan untuk membandingkan 4 (empat) DEM resolusi menengah dalam mengestimasi ketinggian lahan di Kabupaten Manokwari Provinsi Papua Barat yaitu; Space Shuttle Radar Topography Mission (SRTM), ASTER Global DEM, Jaxa’s Global ALOS 3D World, dan Copernicus Digital Elevation Model. Secara umum penelitian ini terdiri atas 3 (tiga) tahapan utama yaitu inventarisasi data DEM, ekstraksi nilai ketinggian dari data DEM, dan komparasi data DEM. Komparasi data dilakukan secara pixel to pixel pada 400 titik sampel yang dipilih secara acak. Disamping itu dilakukan uji T dan uji korelasi untuk mengetahui tingkat perbedaan dan korelasi data DEM. Hasil penelitian menunjukkan bahwa Copernicus GLO-30 Digital Elevation Model memberikan nilai ketinggian lebih tinggi dibandingkan SRTM, ASTER Global Digital Elevation Model, dan Jaxa’s Global ALOS 3D World. Sedangkan Jaxa’s Global ALOS 3D World memberikan nilai ketinggian lebih rendah dibandingkan SRTM, ASTER Global Digital Elevation Model, dan Copernicus GLO-30 Digital Elevation Model. Berdasarkan uji T, terdapat perbedaan yang signifikan antara SRTM, ASTER Global Digital Elevation Model, Jaxa’s Global ALOS 3D World, dan Copernicus GLO-30 Digital Elevation Model dalam mengestimasi ketinggian lahan di Kabupaten Manokwari Provinsi Papua Barat. Meskipun memiliki perbedaan yang signifikan, namun keempat DEM tersebut memiliki korelasi yang kuat dengan nilai koefisien korelasi rata-rata sebesar 0,96.
References
Abrams, M., & Crippen, R. (2019). ASTER Global DEM (Digital Elevation Mode) - Quick Guide for V3. In California Institute of Technology (Vol. 3).
Aziz, K. M. A., & Rashwan, K. S. (2022). Comparison of different resolutions of six free online DEMs with GPS elevation data on a new 6th of October City, Egypt. Arabian Journal of Geosciences, 15(20), 1–11. https://doi.org/10.1007/s12517-022-10845-5
Bachri, S., & Faisol, A. (2023). Zonation of Flood - Prone Areas Based on Remote Sensing Data and Hydrodynamic Models. Jurnal Teknik Pertanian Lampung, 12(2), 509–523.
Badan Informasi Geospasial. (2018). DEMNAS : Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Retrieved from https://tanahair.indonesia.go.id/demnas/#/
Badura, J., & Przybylski, B. (2005). Application of digital elevation models to geological and geomorphological studies - Some examples. Przeglad Geologiczny, 53(10 II), 977–983.
Bettiol, G. M., Ferreira, M. E., Motta, L. P., Cremon, É. H., & Sano, E. E. (2021). Conformity of the nasadem_hgt and alos aw3d30 dem with the altitude from the brazilian geodetic reference stations: A case study from Brazilian Cerrado. Sensors, 21(9), 25 p. https://doi.org/10.3390/s21092935
Chenrai, P. (2012). DEM application for geological structure interpretation: A case study at the Koh Samui area, Gulf of Thailand. World Applied Sciences Journal, 17(11), 1516–1520.
Chymyrov, A. (2021). Comparison of different DEMs for hydrological studies in the mountainous areas. Egyptian Journal of Remote Sensing and Space Science, 24(3), 587–594. https://doi.org/10.1016/j.ejrs.2021.08.001
Dobre, B., Kovács, I. P., & Bugya, T. (2021). Comparison of digital elevation models through the analysis of geomorphic surface remnants in the Desatoya Mountains, Nevada. Transactions in GIS, 25(5), 2262–2282. https://doi.org/10.1111/tgis.12819
Europe’s Eyes on Earth. (2017). Overview of Global DEM assessment of the current global DEMs and requirements for an update global DEM (Vol. 3).
Europe’s Eyes on Earth. (2024). Copernicus In Situ Component Information System (CIS). Retrieved February 21, 2024, from https://cis2.eea.europa.eu/data/488/
Faisol, A., & Indarto, I. (2010). Soil Erosion Prediction Using GIS and RUSLE : Study at Sampean Watershed. Tropical Soil, 15(2), 147–152. https://doi.org/10.5400/jts.2010.15.2.147
Faisol, A., Indarto, I., Novita, E., & Budiyono, B. (2020). Pemetaan Potensi Bahaya Banjir Di Kabupaten Manokwari Melalui Pemanfaatan Data Global Precipitation Measurement (GPM) dan Analisis Bentang Lahan. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 9(2), 96. https://doi.org/10.23960/jtep-l.v9i2.96-103
Faisol, A., & Mashudi. (2023). Estimation of Erosion Potentials through Utilization of Remote Sensing Data and The Universal Soil Loss Equation Model. Jurnal Teknik Pertanian Lampung, 12(1), 223–235.
Gesch, D., Oimoen, M., Danielson, J., & Meyer, D. (2016). Validation of the ASTER global digital elevation model version 3 over the Conterminous United States. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(July), 143–148. https://doi.org/10.5194/isprsarchives-XLI-B4-143-2016
Ghannadi, M. A., Alebooye, S., Izadi, M., & Ghanadi, A. (2023). Vertical Accuracy Assessment of Copernicus Dem (Case Study: Tehran and Jam Cities). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10(4/W1-2022), 209–214. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-209-2023
Jackson, S. L. (2009). Research Methods and Statistics : A Critical Thinking Approach (3rd ed.). Belmont: Wadsworth. Retrieved from www.ichapters.com
JAXA EORC. (2020). ALOS Global Digital Surface Model (DSM). In Earth Observation Research Center Japan Aerospace Exploration Agency (JAXA EORC). Retrieved from https://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v31_product_e_a.pdf
Jha, R. (2018). Application of 30m Resolution SRTM DEM in Nepal. Journal of the Institute of Engineering, 14(1), 235–240. https://doi.org/10.3126/jie.v14i1.20089
Jin, Y., Yi, C. L., & Fu, P. (2020). Evaluation of the Accuracy of SRTM3 and ASTER GDEM in the Tibetan Plateau Mountain Ranges. E3S Web of Conferences, 206, 1–9. https://doi.org/10.1051/e3sconf/202020601027
Li, M., Yin, X., Tang, B. H., & Yang, M. (2023). Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China. Remote Sensing, 15(7), 22 p. https://doi.org/10.3390/rs15071952
Machiwal, D., & Jha, M. K. (2012). Hydrologic Time Series Analysis: Theory and Practice (1st ed.). New Delhi: Springer International Publishing.
Mulder, V. L., Bruin, S. De, Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing in soil and terrain mapping — A review. Geoderma, 162(1–2), 1–19. https://doi.org/10.1016/j.geoderma.2010.12.018
Nalendra, A. R. A., Rosalinah, Y., Priadi, A., Subroto, I., Rahayuningsih, R., Lestari, R., … Zede, V. A. (2021). Stastitika Seri Dasar Dengan SPSS. In Media Sains Indonesia : Bandung. Retrieved from http://www.penerbit.medsan.co.id/
NASA-JPL. (2015). The Shuttle Radar Topography Mission (SRTM) Collection User Guide. Retrieved from https://lpdaac.usgs.gov/documents/179/SRTM_User_Guide_V3.pdf
Nuryadi, Astuti, T. D., Utami, E. S., & Budiantara, M. (2017). Dasar-Dasar Statistik Penelitian (1st ed.). Yogyakarta: Sibuku Media.
Santillan, J. R., & Makinano-Santillan, M. (2016). Vertical accuracy assessment of 30-M resolution ALOS, ASTER, and SRTM global DEMS over Northeastern Mindanao, Philippines. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 149–156. https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016
Santillan, Jojene R., Makinano-Santillan, M., & Makinano, R. M. (2016). Vertical accuracy assessment of ALOS World 3D - 30M Digital Elevation Model over northeastern Mindanao, Philippines. International Geoscience and Remote Sensing Symposium (IGARSS), 2016-Novem(July 2016), 5374–5377.
https://doi.org/10.1109/IGARSS.2016.7730400
Talchabhadel, R., Nakagawa, H., Kawaike, K., Yamanoi, K., & Thapa, B. R. (2021). Assessment of vertical accuracy of open source 30m resolution space-borne digital elevation models. Geomatics, Natural Hazards and Risk, 12(1), 939–960. https://doi.org/10.1080/19475705.2021.1910575
The European Space Agency. (2022). Copernicus Digital Elevation Model Handbook. In GSICS Quarterly.
Tighe, M. L., & Chamberlain, D. (2009). Accuracy comparison of the SRTM , ASTER , NED , NEXTMAP® USA digital terrain model over several USA study sites. DIGITAL MAPPING From Elevation to Information ASPRS/MAPPS 2009 Conference, 12.
Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12, 23 p.
Yang, L., Meng, X., & Zhang, X. (2011). SRTM DEM and its application advances. International Journal of Remote Sensing, 32(14), 3875–3896. https://doi.org/10.1080/01431161003786016
Zhang, K., Gann, D., Ross, M., Robertson, Q., Sarmiento, J., Santana, S., … Fritz, C. (2019). Remote Sensing of Environment Accuracy assessment of ASTER , SRTM , ALOS , and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sensing of Environment, 225(February), 290–306. https://doi.org/10.1016/j.rse.2019.02.028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Majalah Ilmiah Globe
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.