PEMETAAN MANGROVE MENGGUNAKAN ALGORITMA MULTIVARIATE RANDOM FOREST
Studi Kasus di Segara Anakan, Cilacap
Keywords:
akurasi, indeks vegetasi, mangrove, random forest, Sentinel-2Abstract
Potensi pengembangan dan pemanfaatan Artificial Intelligence (AI) dan Machine Learning (ML) terus meningkat untuk dimanfaatkan dalam pemrosesan data penginderaan jauh pada periode waktu terakhir. Teknologi penginderaan jauh telah terbukti dapat diandalkan untuk mendeteksi sebaran tutupan mangrove. Salah satu metode berbasis ML yang digunakan untuk melakukan deteksi sebaran tutupan mangrove adalah metode Random Forest. Penelitian ini berfokus pada pengujian akurasi klasifikasi Random Forest dalam mengidentifikasi mangrove di Segara Anakan, Cilacap. Seluruh pemrosesan data dan analisis dilakukan menggunakan platform berbasis cloud, Google Earth Engine. Data yang digunakan yaitu citra satelit Sentinel-2A akuisisi tanggal 1 Januari - 31 Desember 2020. Metode klasifikasi menggunakan algoritma RF dengan 12 kombinasi band dan indeks yang berbeda: biru, hijau, merah, red edge, NIR, SWIR-1, SWIR-2, NDVI, MNDWI, SR, GCVI, MMRI. Hasil penelitian menunjukkan bahwa hasil klasifikasi menggunakan 12 parameter mampu mengidentifikasi mangrove dengan nilai akurasi yang tinggi (OA = 0,892; kappa = 0,782). Hasil penelitian ini menunjukkan bahwa MMRI menjadi parameter yang diketahui memiliki kemampuan yang paling baik dalam memisahkan objek mangrove dan non-mangrove, diikuti selanjutnya oleh SWIR-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Majalah Ilmiah Globe
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.