PENGARUH KONDISI TOPOGRAFI TERHADAP SEBARAN SUHU PERMUKAAN LAHAN
Studi Kasus di Hulu Sub DAS Cikapundung, Jawa Barat
Keywords:
aspek, elevasi, LST, NDVI, penginderaan jauh, slope, Sub-DAS CikapundungAbstract
ABSTRAK
Wilayah hulu daerah aliran sungan (DAS) merupakan area resapan air yang penting dalam siklus hidrologi. Sebaran suhu permukaan lahan (Land Surface Temperature/LST) dapat menjadi prediktor perubahan kondisi hidrologi. Sebaran vegetasi dan kondisi topografi di Hulu Sub-DAS Cikapundung dapat mempengaruhi sebaran LST. Penelitian ini bertujuan mengetahui hubungan LST dengan kondisi topografi berupa elevasi, slope dan aspek melalui data penginderaan jauh. Nilai LST diperoleh dengan metode Mono Window Algorithm menggunakan citra multispektral Landsat 8 OLI, sedangkan sebaran vegetasi menggunakan metode Normalized Difference Vegetation Index (NDVI) dari pengolahan citra Sentinel 2A-MSI. Kondisi topografi dianalisis menggunakan DEMNAS. Analisis statistik korelasi dan regresi dilakukan untuk mengetahui hubungan LST dan kondisi topografi. Hasil penelitian menunjukkan bahwa sebaran LST berkorelasi negatif signifikan dengan NDVI, elevasi dan slope. Namun, LST tidak signifikan berkorelasi dengan aspek. Pengaruh elevasi terhadap LST pada bulan basah dan kering yaitu 41-45%, sedangkan pengaruh slope sebesar 26-31%. Karakteristik tutupan lahan melalui nilai NDVI juga mempengaruhi hubungan antara LST dan kondisi topografi. Elevasi rendah dan slope yang datar memperbesar ruang penerimaan radiasi matahari sehingga LST lebih tinggi. Tutupan lahan tegalan dan permukiman pada wilayah hulu DAS menyebabkan evapotranspirasi dan LST yang tinggi sehingga mengganggu fungsi hidrologi. Oleh karena itu, pemantauan LST dengan mempertimbangkan kondisi topografi sangat penting dilakukan terutama terhadap wilayah yang mengalami perubahan tutupan lahan. Hasil penelitian ini dapat digunakan sebagai basis data pemantauan kondisi hidrologi, perencanaan tata ruang dan antisipasi perubahan iklim di wilayah hulu DAS.
References
Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L. & Radocinski, R.G. (2014). Landsat-8 Thermal Infrared Sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607-11626. DOI: https://doi.org/10.3390/rs61111607.
Bertoldi, G., Notarnicola, C., Leitinger, G., Endrizzi, S., Zebisch, M., Della Chiesa, S. & Tappeiner, U. (2010). Topographical and ecohydrological controls on land surface temperature in an alpine catchment. Ecohydrology, 3(2), 189-204. DOI: https://doi.org/10.1002/eco.129.
Bindajam, A.A., Mallick, J., AlQadhi, S., Singh, C.K. & Hang, H. T. (2020). Impacts of Vegetation and Topography on Land Surface Temperature Variability over the Semi-Arid Mountain Cities of Saudi Arabia. Atmosphere, 11(7), 762-762. DOI: https://doi.org/10.3390/atmos11070762.
Brauman, K.A., Freyberg, D.L. & Daily, G.C. (2012). Land cover effects on groundwater recharge in the tropics: ecohydrologic mechanisms. Ecohydrology, 5(4), 435-444. DOI: https://doi.org/10.1002/eco.236.
Brevik, E.C. (2013). The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3(3), 398-417. DOI: https://doi.org/10.3390/agriculture3030398.
Brunsell, N. (2006). Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sensing of Environment, 100(2), 200-211. DOI: https://doi.org/10.1016/j.rse.2005.10.025.
Dagbegnon, C., Djebou, S. & Singh, V.P. (2016). Impact of climate change on the hydrologic cycle and implications for society. Environment and Social Psychology, 1(1), 36-49. DOI: https://doi.org/10.18063/ESP.2016.01.002.
Degife, A., Worku, H., Gizaw, S. & Legesse, A. (2019). Land use land cover dynamics, its drivers and environmental implications in Lake Hawassa Watershed of Ethiopia. Remote Sensing Applications: Society and Environment, 14, 178-190. DOI: https://doi.org/10.1016/j.rsase.2019.03.005.
Duan, S.-B., Li, Z.-L. & Leng, P. (2017). A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sensing of Environment, 195, 107-117. DOI: https://doi.org/10.1016/j.rse.2017.04.008.
Fadhil, M.Y., Hidayat, Y. & Baskoro, D.P.T. (2021). Identifikasi Perubahan Penggunaan Lahan dan Karakteristik Hidrologi DAS Citarum Hulu. Jurnal Ilmu Pertanian Indonesia, 26(2), 213-220. DOI: https://doi.org/10.18343/jipi.26.2.213.
Firozjaei, M.K., Kiavarz, M., Nematollahi, O., Karimpour Reihan, M. & Alavipanah, S.K. (2019). An evaluation of energy balance parameters, and the relations between topographical and biophysical characteristics using the mountainous surface energy balance algorithm for land (SEBAL). International Journal of Remote Sensing, 40(13), 5230-5260. DOI: https://doi.org/10.1080/01431161.2019.1579385.
Gorgani, S.A., Panahi, M. & Rezaie, F. (2016). The relationship between NDVI and LST in the urban area of Mashhad, Iran. International Conference on Civil Engineering Architecture & Urban Sustainable Development, 27-28 November 2013, Tabriz , Iran.
Guo, J., Ren, H., Zheng, Y., Lu, S. & Dong, J. (2020). Evaluation of land surface temperature retrieval from Landsat 8/TIRS images before and after stray light correction using the SURFRAD dataset. Remote Sensing, 12(6), 1023, 1-21. DOI: https://doi.org/10.3390/rs12061023.
He, J., Zhao, W., Li, A., Wen, F. & Yu, D. (2019). The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas. International Journal of Remote Sensing, 40(5-6), 1808-1827. DOI: https://doi.org/10.1080/01431161.2018.1466082.
Heinl, M., Leitinger, G. & Tappeiner, U. (2012). Diurnal Surface Temperature Regimes in Mountain Environments. Physical Geography, 33(4), 344-359. DOI: https://doi.org/10.2747/0272-3646.33.4.344.
Hulley, G.C., Ghent, D., Göttsche, F.M., Guillevic, P.C., Mildrexler, D.J. & Coll, C. (2019). 3 - Land surface temperature. 57-127pp. In Hulley, G.C. & Ghent, D. (Eds.) Taking the temperature of the earth. Elsevier. ii, 246p. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-814458-9.00003-4.
Istiawan, N.D. & Kastono, D. (2019). Pengaruh ketinggian tempat tumbuh terhadap hasil dan kualitas minyak cengkih (Syzygium aromaticum (L.) Merr. & Perry.) di Kecamatan Samigaluh, Kulon Progo. Vegetalika, 8(1), 27-41. DOI: https://doi.org/10.22146/veg.35744.
Jimenez-Munoz, J.C., Cristobal, J., Sobrino, J.A., Soria, G., Ninyerola, M., Pons, X. & Pons, X. (2009). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat Thermal-Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 339-349. DOI: https://doi.org/10.1109/TGRS.2008.2007125.
Jiménez-Muñoz, J.C., Sobrino, J.A., Skoković, D., Mattar, C. & Cristóbal, J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843. DOI: https://doi.org/10.1109/LGRS.2014.2312032.
Jiménez‐Muñoz, J.C. & Sobrino, J.A. (2003). A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22), 2-1-2-9. DOI: https://doi.org/10.1029/2003JD003480.
Kayiranga, A., Ndayisaba, F., Nahayo, L., Karamage, F., Nsengiyumva, J.B., Mupenzi, C. & Nyesheja, E.M. (2017). Analysis of climate and topography impacts on the spatial distribution of vegetation in the Virunga Volcanoes Massif of East-Central Africa. Geosciences, 7(1), 17, 1-18. DOI: https://doi.org/10.3390/geosciences7010017.
Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 87-94. DOI: https://doi.org/10.1016/j.ejrs.2017.01.005.
Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems. Springer Berlin, Heidelberg. 2nd Edition. xi, 349p. DOI: https://doi.org/10.1007/978-3-642-18970-8.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F. & Sobrino, J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. DOI: https://doi.org/https://doi.org/10.1016/j.rse.2012.12.008.
Marhaento, H., Booij, M.J. & Hoekstra, A.Y. (2018). Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63(9), 1368-1385. DOI: https://doi.org/10.1080/02626667.2018.1511054.
Marsoedi, D.S., Widagdo, D.J., Suharta, N., Darul, S.W.P. & Hardjowigeno, S. (1997). Guidelines for landform classification. 33p. Puslittanak-the Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture in Agricultural Science And Technology Information, FAO.
Niclòs, R., Puchades, J., Coll, C., Barberà, M. J., Pérez-Planells, L., Valiente, J.A. & Sánchez, J.M. (2021). Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers. ISPRS Journal of Photogrammetry and Remote Sensing, 174(2017), 237-253. DOI: https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.02.005.
Njoku, E.A. & Tenenbaum, D.E. (2022). Quantitative assessment of the relationship between land use/land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sensing Applications: Society and Environment, 27(2022), 100780, 1-18. DOI: https://doi.org/10.1016/j.rsase.2022.100780.
Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. (2020). Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Scientific Reports, 10(1), 10451-10451. DOI: https://doi.org/10.1038/s41598-020-67423-6.
Pierce, K.B., Lookingbill, T. & Urban, D. (2005). A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology, 20(2), 137-147. DOI: https://doi.org/10.1007/s10980-004-1296-6.
Qin, Z., Dall'Olmo, G., Karnieli, A. & Berliner, P. (2001a). Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA‐advanced very high resolution radiometer data. Journal of geophysical Research: Atmospheres, 106(D19), 22655-22670. DOI: https://doi.org/10.1029/2000JD900452.
Qin, Z., Karnieli, A. & Berliner, P. (2001b). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719-3746. DOI: https://doi.org/10.1080/01431160010006971.
Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115(12), 3175-3186. DOI: https://doi.org/10.1016/j.rse.2011.07.003.
Silvestro, F., Gabellani, S., Delogu, F., Rudari, R. & Boni, G. (2013). Exploiting remote sensing land surface temperature in distributed hydrological modelling: the example of the Continuum model. Hydrology and Earth System Sciences, 17(1), 39-62. DOI: https://doi.org/10.5194/hess-17-39-2013.
Siswanto, S.Y. & Francés, F. (2019). How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences, 78, 50(2019) 1-15. DOI: https://doi.org/10.1007/s12665-019-8561-0.
Sobrino, J.A., Jiménez-Muñoz, J.C. & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440. DOI: https://doi.org/https://doi.org/10.1016/j.rse.2004.02.003.
Sobrino, J.A., Jimenez-Munoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A. & Martinez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327. DOI: https://doi.org/10.1109/TGRS.2007.904834.
Sobrino, J.A., Li, Z.L., Stoll, M.P. & Becker, F. (1996). Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17(11), 2089-2114. DOI: https://doi.org/10.1080/01431169608948760.
Soja, G., Züger, J., Knoflacher, M., Kinner, P., & Soja, A.-M. (2013). Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). Journal of Hydrology, 480, 115-124. DOI: https://doi.org/10.1016/j.jhydrol.2012.12.013.
Solihin, M.A. & Putri, N. (2020). Keragaman penggunaan lahan eksisting di hulu sub DAS Cikapundung berdasarkan indeks vegetasi dan temperatur permukaan lahan. Agrikultura, 31(3), 251-262. DOI : https://doi.org/10.24198/agrikultura.v31i3.29467.
Solihin, M.A., Putri, N., Setiawan, A., Siliwangi, D. & Arifin, M. (2020). Karakteristik indeks vegetasi pada berbagai penggunaan lahan di hulu sub DAS Cikapundung melalui interpretasi citra satelit Landsat 8. Kultivasi, 19(3), 1202-1209. DOI : https://doi.org/10.24198/kultivasi.v19i3.28625.
Tomlinson, C.J., Chapman, L., Thornes, J.E. & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18(3), 296-306. DOI: https://doi.org/10.1002/met.287.
Trigo, I.F., Monteiro, I.T., Olesen, F. & Kabsch, E. (2008). An assessment of remotely sensed land surface temperature. Journal of Geophysical Research: Atmospheres, 113(D17). DOI: https://doi.org/10.1029/2008JD010035.
Wang, Z., Lu, Z. & Cui, G. (2020). Spatiotemporal Variation of Land Surface Temperature and Vegetation in Response to Climate Change Based on NOAA-AVHRR Data over China. Sustainability, 12(9), 3601. DOI: https://doi.org/10.3390/su12093601.
Wohl, E., Barros, A., Brunsell, N., Chappell, N.A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, J.M. & Juvik, J. (2012). The hydrology of the humid tropics. Nature Climate Change, 2(9), 655-662. DOI: https://doi.org/10.1038/nclimate1556.
Xu, C., Chen, Y., Yang, Y., Hao, X., & Shen, Y. (2010). Hydrology and water resources variation and its response to regional climate change in Xinjiang. Journal of Geographical Sciences, 20(4), 599-612. DOI: https://doi.org/10.1007/s11442-010-0599-6.
Xue, Y., Lu, H., Guan, Y., Tian, P. & Yao, T. (2021). Impact of thermal condition on vegetation feedback under greening trend of China. Science of the Total Environment, 785(2021), 147380. DOI: https://doi.org/10.1016/j.scitotenv.2021.147380.
Yue, W., Xu, J., Tan, W. & Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing, 28(15), 3205-3226. DOI: https://doi.org/10.1080/01431160500306906.
Zhang, L., Nan, Z., Xu, Y. & Li, S. (2016). Hydrological impacts of land use change and climate variability in the Headwater Region of the Heihe River Basin, Northwest China. PLoS ONE, 11(6), e0158394-e0158394. DOI: https://doi.org/10.1371/journal.pone.0158394.
Zhu, W., Lű, A. & Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130(2013), 62-73. DOI: https://doi.org/10.1016/j.rse.2012.10.034.
Zhu, X., Duan, S.-B., Li, Z.-L., Zhao, W., Wu, H., Leng, P., Gao, M. & Zhou, X. (2021). Retrieval of Land surface temperature with topographic effect correction from Landsat 8 Thermal Infrared Data in Mountainous Areas. IEEE Transactions on Geoscience and Remote Sensing, 59(8), 6674-6687. DOI: https://doi.org/10.1109/TGRS.2020.3030900.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Majalah Ilmiah Globe
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.