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ABSTRACT 

The availability of high-density LiDAR datasets, enabled by UAV-based airborne laser scanning, has 

allowed topographic mapping surveyors to see unprecedented details on the earth’s surface. One of the 
problems faced in large-scale topographic mapping is generating proper three-dimensional contour lines for 

vertical cliffs, recesses, and overhangs, especially when the surface is covered by vegetation, which is quite 
common in the tropical area. This paper showcases the practical application of the LiDAR survey using an 

unmanned aerial vehicle and ground point classification process using the Simple Morphological Filter (SMRF) 

algorithm to produce high-fidelity, three-dimensional digital contour maps of coastal cliffs. By rotating the 
LiDAR dataset before the classification process to minimize overlapping surfaces, the entire dataset can be 

simulated as a 2.5-D surface. Therefore, the SMRF algorithm can be executed to classify all ground points on 
the cliff surface, including the overhangs and recesses. The resulting ground surface derived from this 

classification process provided a sufficient approximation of the real-world surface in overhanging cliffs and 

recesses while maintaining the conventional way to convey local landscape topography through three-

dimensional contour lines. 
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ABSTRAK 

Ketersediaan data LiDAR dengan kerapatan tinggi yang diperoleh dari pemindaian laser dari udara 
menggunakan wahana tanpa awak, telah memungkinkan surveyor pemetaan topografi untuk melihat tingkat 
detail yang belum pernah terlihat sebelumnya di permukaan bumi. Salah satu masalah yang dihadapi dalam 
pemetaan topografi skala besar adalah pembuatan garis kontur tiga dimensi yang akurat untuk tebing vertikal, 
relung, dan permukaan menggantung, terutama ketika permukaan tersebut tertutup oleh vegetasi yang cukup 
umum terjadi di daerah tropis. Kajian ini akan menunjukkan aplikasi praktis dari survey LiDAR menggunakan 
wahana tanpa awak dan proses klasifikasi titik tanah menggunakan algoritma Simple Morphological Filter 
(SMRF) untuk menghasilkan peta kontur digital tiga dimensi dengan ketelitian tinggi dari tebing-tebing pantai. 
Dengan melakukan rotasi dataset LiDAR sebelum proses klasifikasi untuk untuk meminimalkan permukaan 
yang tumpang tindih, seluruh dataset dapat disimulasikan sebagai permukaan 2,5-D. Oleh karena itu, 
algoritma SMRF dapat dijalankan untuk mengklasifikasikan semua titik-titik tanah pada permukaan tebing, 
termasuk relung dan ceruk-ceruknya. Permukaan tanah yang dihasilkan oleh proses klasifikasi ini memberikan 
pendekatan yang cukup baik dari permukaan asli di tebing dan relung pantai sambil tetap mempertahankan 
pendekatan konvensional dalam penyajian topografi bentang alam lokal melalui garis kontur tiga dimensi. 

Kata Kunci: lidar, data titik, simple morphological filter, klasifikasi tanah, menggantung, pemodelan tebing  
 
INTRODUCTION 

The classification of bare earth surface from 
the laser point cloud is essential in the post-

processing stage of topographic surveys using 
LiDAR technology. The level of detail captured by 

high-density LiDAR scanning enables planners and 
designers to understand better the work area’s 

uniqueness, especially hard-to-reach terrain 
overgrown with vegetation. Recently, laser 

measurements through various techniques have 

been applied to obtain highly accurate Digital 

http://dx.doi.org/10.24895/JIG.2021.27-1.1252


Geomatika Volume 27 No. 1 Mei 2021: 51-60 

52 

Elevation Models of sea cliffs, which is very 

important in reconstructing the three-dimensional 
surfaces of near-vertical sea cliffs surfaces 

overlooking the sea (Ruberti et al, 2020). These 
physical models of the sea cliffs can be utilized to 

monitor landslide phenomena, characterize spatial 

discontinuity, and assess cliff stability by applying 
geomechanical models (Mancini et al., 2017). The 

precision monitoring of the coastal cliff is essential, 
especially when such sites are adjacent to buildings 

and infrastructures, since retreating coastal cliffs 

due to erosion from waves can be detrimental to 
such structures’ stability. Very steep terrain and 

heavily vegetated cliffs are some of the factors that 
hinder the study of physical processes on 

shorelines, especially the acquisition of quantitative 
data (Hampton & Griggs, 2004). 

Representing coastal cliff surfaces with 

acceptable accuracy is a challenge that needs to be 
overcome by scientists monitoring the coastal 

landforms (Xhardé et al., 2006) because vertical 
surfaces and recesses such as coastal cliffs, 

notches, and overhangs present a significant 

limitation to the completeness of the conventional 
airborne LiDAR survey in such areas. While a high-

fidelity cliff surface can be generated from 
photogrammetric techniques (James & Robson, 

2012), in some areas with vegetation overgrowth, 
the accuracy of such methods is limited since the 

surface modeled in photogrammetry is the topmost 

surface, which includes vegetation canopy, not the 
actual ground or the bare earth.  

The advent of the off-the-shelf commercial-
grade unmanned aerial vehicles (UAV) has 

revolutionized the geospatial industry as a whole, 

especially LiDAR topographic mapping. Coupled 
with the miniaturization of LiDAR scanners and 

precise positioning devices, UAVs can be used as a 
reliable vehicular platform to perform LiDAR surveys 

(Wallace et al., 2012). UAV-based LiDAR surveys 

have become a viable solution to survey areas that 
are too small or too dangerous to be surveyed using 

manned aircraft. One of the benefits of UAV-based 
LiDAR scanning is the capability to capture the point 

cloud of a cliff from the seaside, which will not be 
possible to be accomplished with a terrestrial laser 

scanner. Another advantage of the LiDAR survey 

using the UAV platform is the inherent versatility in 
flying much closer to the object of interest than 

conventionally-piloted aircraft platforms, hence 
increasing the details that can be captured through 

much higher point cloud density (Wallace et al., 

2012).  
A previous study by Pack et al., (2012) has 

shown that additional step can be done in TerraSolid 
software to achieve better point cloud classification 

results in such area by transforming surfaces that 
can only be represented in 3-D to surfaces that can 

be represented in 2.5-D space using a three-

dimensional rotation of the LiDAR dataset.  

This study aims to showcase the application of 

three-dimensional rotation of the LiDAR dataset to 
improve ground classification, and the final result 

will be produced as three-dimensional contour lines 
instead of a meshed surface. The accuracy of the 

contour lines should satisfy the requirements for 

1:1,000 scale topographic mapping. The three-
dimensional contour lines allow users to visualize 

and spatially analyze vertical cliffs and overhangs 
while retaining contour lines as one of the defining 

characteristics of a topographic map. 

METHODS 

Study Area  

The LiDAR datasets used in this case study 

were taken from two distinct locations in the 

southern part of Bali Island, Indonesia, specifically 
in the Pecatu village in South Kuta District, as 

presented in Figure 1. The LiDAR data acquisition 
was undertaken in 2019 (site B) and 2020 (site A) 

by utilizing a survey-grade, UAV-based laser 
scanner. These two datasets show beach cliffs being 

studied, ranging from 30 meters to 150 meters high, 

with various vegetation coverage levels and canopy 
density. 

 
Figure 1.  Study areas are located at the northern coast 

(site A) and southern coast (site B) of the 
Pecatu region, Bali. Source: DEM Nasional 
(Badan Informasi Geospasial, 2020) 

These coastal cliffs at two opposite sides of the 

peninsula are part of the South Bali geological 

formation, consisting of partly bedded, 
recrystallized, and fossiliferous reef limestone 

(Purbo-Hadiwidjojo et al., 1998). Oblique aerial 
photos from the reconnaissance survey of the study 

areas are shown in Figure 2 (Site A) and Figure 3 

(Site B). 
The first dataset (from site A, located at 8° 48’ 

41” S, 115° 06’ 02” E) contains a 30 meters tall, 
430-meter wide cliff with a moderate degree of 

vegetation overgrowth, both on the top of the cliff 
and its midsection, and a significant amount of 

recesses and alcoves near to the sea surface. A 

large number of boulders scattered in the seawater 
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in front of a bare section of the cliff indicated that a 

portion of the cliff has detached from the main body 
due to marine erosion in relatively recent times. The 

second dataset (from site B, located at 8° 50’ 46” S, 
115° 07’ 39” E) contains a 150-meter tall cliff, with 

a minimum amount of superficial vegetation cover 

and a wide but slender recess. Due to the limits 
imposed on private property access, the cliff face 

studied in the second dataset is narrower than the 
first dataset, at only 150 meters wide.  

 

 
Figure 2.  The 30-meter tall vegetated cliff face at 

Site A, with a significant amount of 
overhanging rock face and recesses. 

 
Figure 3. The 150-meter tall, almost vertical cliff face at 

Site B, with slight recess at the lower part. 

Control Network and Test Points 

The base station coordinates for the LiDAR 
acquisition for both areas were surveyed using a 

CHC X900B GNSS receiver, referenced to station 
CDNP (located at 8° 49’ 05.18061” S, 115° 08’ 

44.35987” E), which is part of Indonesia’s 

Continuously Operating Reference Station (CORS) 
network. The ground test points were measured by 

employing a Real-Time Kinematic (RTK) GNSS 

survey technique. 

LiDAR Data Acquisition 

Since the cliffs are almost vertical and contain 

several overhangs, conventional methods of 
employing airborne LiDAR from manned aircraft and 

terrestrial laser scanner (TLS) is deemed unsuitable. 

Furthermore, the cost of the LiDAR survey using 

manned aircraft is deemed inefficient given the 
small size of the project area. A topographic survey 

using TLS is unsuitable due to the difficulty in 
covering the entire cliff surface, including its 

recesses and overhangs, from a safe observation 

point. The amount of vegetation overgrowth 
prevents cliff surface modeling through 

photogrammetry techniques. Therefore, a LiDAR 
survey from UAV platform is considered the best 

solution in this particular case. 

Both LiDAR datasets were acquired using a 
Phoenix AL3-32 laser scanner equipped with KVH-

1750 IMU and mounted on a DJI Matrice 600 UAV. 
For the GNSS base station, a CHC X900B GNSS 

receiver was used. The UAV was flown 50-60 meters 
in front of the rock-face at the seaside, running 

parallel to the coastline, to maximize the capture 

process of vertical surfaces on the coastal cliff. For 
Site B, multiple survey lines were made to cover the 

entire vertical distance of 150 meters from sea level 
to the top of the cliff. The kinematic GNSS survey 

method was employed in conjunction with IMU data 

to obtain the accurate flight trajectory of the UAV.  
The ground coordinates of each point in the 

point cloud can be calculated by combining the 
information from the laser scanner, integrated 

GPS/INS navigation system, and the calibrated 
values of the laser scanner and its platform 

(Glennie, 2008). Such computation provides an 

unclassified point cloud as the basis for surface 
reconstruction and modeling. However, a ground 

classification process will need to be performed to 
ensure that the data points involved in the surface 

reconstruction actually represent the bare-earth 

surface. The established LiDAR georeferencing 
equation, according to Glennie (2008), is as follows 
Formula 1: 

𝑝𝐺
𝑙 = 𝑝𝐺𝑃𝑆

𝑙 + 𝑅𝑏
𝑙 (𝑅𝑠

𝑙 𝑟𝑠 − 𝑙𝑏)………………………………(1) 

where 𝑝𝐺
𝑙  are the coordinates of the target 

point in the global reference frame, 𝑝𝐺𝑃𝑆
𝑙  are the 

coordinates of the GNSS sensor in the global 

reference frame, 𝑅𝑏
𝑙  is the rotation matrix from the 

navigation frame to the global reference frame, 𝑅𝑠
𝑙  

is the rotation matrix from the scanner’s frame to 
the navigation frame, 𝑟𝑠 is the coordinates of the 

laser point in the scanner’s frame, and 𝑙𝑏 is the 

lever-arm offset between the scanner’s initial origin 
and the navigation’s origin. In order to georeference 

a single LiDAR return, all parameters must be 
determined for each laser pulse. Typically, the 

position, attitude, and motion of the scanning 

platform, which are sampled at a much lower rate 
than the laser scanner’s pulse rate, are interpolated 

to line up with the LiDAR measurements. This set of 
information of positions and attitudes is then 

combined via Formula 1 to create a georeferenced 

point cloud (Bell et al., 2020). 
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Classification of Ground Points 

Classification of lidar point clouds to separate 

bare-earth from vegetation and other non-ground 
object is a crucial step in lidar mapping, and many 

lidar point filters have been developed for this 
purpose. Common bare-earth filters typically 

operate along a vector aligned with the LiDAR shot 

direction or referring to a vertical vector. These 
filters operate on a 2.5-D surface, which is suitable 

for creating 2.5-D products, such as digital elevation 
models and orthophotos (Pack et al., 2012). This 

2.5-D space implies a planimetric position combined 
with a single value of height for each data point 

(Pfeifer, 2005), and most of the surface of the earth 

can be modeled in 2.5-D space.  
Various studies on the ground-filtering 

algorithms, such as the study done by Zhang et al., 
(2003) on Progressive Morphological Filter (PMF) 

algorithm, (Zhang et al., 2016) on the Cloth 

Simulation Filter (CSF), and another study by Pingel 
et al., (2013) on the Simple Morphological Filter 

(SMRF) algorithm provides a viable open-source 
alternative to perform point cloud classification to 

established either commercial or proprietary 
software, such as TerraScan module in TerraSolid, 

LasGround tool in LASTools, and Auto Classify 

Ground Points tool in Global Mapper. These 
software packages can automatically distinguish 

ground points and non-ground points, in most 
cases. In reality, some areas on the earth’s surface 

contain features that cannot be modeled 

satisfactorily in 2.5-D space, such as vertical cliffs 
and overhangs. When faced with such datasets, the 

ground classification algorithms in the 
aforementioned software packages will not produce 

realistic results since they will only look for the aerial 

low points and disregarding the overhanging 
surfaces. Valid bare-earth points that form the wall 

and the overhang surface will remain incorrectly 
classified as non-ground points.  

As illustrated in Figure 4, the 2.5-D ground 
classification algorithms can be run directly for the 

first dataset (top) because only one possible Z-value 

can be inferred for each X-Y coordinates. In 
contrast, for the second dataset (bottom), there will 

be two Z-values for the overhanging part of the 
object, therefore typical ground class. To model 

vertical, near-vertical cliffs, and overhangs, 

additional steps need to be done to be classified 
appropriately by 2.5D classifiers. The automatic 

ground point classification tools integrated within 
leading LiDAR processing software suites such as 

Terrasolid, LASTools, PDAL, and CloudCompare 
works on 2.5-D space, in which only a single ground 

surface is considered within the classification 

algorithm. 

 
Figure 4.  The object at the top can be modeled in 2.5-

D, and the object at the bottom should be 
modeled in 3-D. 

In this case study, the SMRF algorithm in the 
Point Data Abstraction Library (PDAL) software suite 

(Bell et al., 2020) is utilized. The SMRF algorithm 

consists of four conceptually distinct stages: 1) the 
creation of the minimum surface, 2) the processing 

of the minimum surface, in which grid cells from the 
raster are identified as either containing ground or 

non-ground points, 3) the creation of a DEM from 

these gridded points, and 4) the identification of the 
original LIDAR points as either bare earth or non-

ground based on their relationship to the 
interpolated DEM (Pingel et al., 2013).  

These stages are integrated into a single 
command in PDAL, with several parameters that can 

be set to adjust the algorithm’s behavior. The SMRF 

algorithm is an improvement to the PMF algorithm, 
which was derived by K. Zhang et al. (2003) from a 

morphological filter originally proposed by Kilian et 
al. (1996), by gradually increasing the window size 

of the morphological filter to enable the filtering of 

all non-ground objects of various sizes. 
First, the noises and outliers were removed 

from the LiDAR data by running the Noise Filter tool 
in CloudCompare. Only after all visible point data 

outliers from scanning artifacts are removed, 
subsequent processing can commence. Since the 

ground classification algorithm using the SMRF 

algorithm only works in 2.5-D space, a rotation of 
the dataset needs to be performed to enable the 

SMRF algorithm to classify bare ground on cliffs and 
overhangs, as illustrated in Figure 6. Rotation 

direction is determined by maximizing the surface 

of the cliff so that any overhanging surface is 
exposed towards the top view ground classifier 

algorithm works correctly. One of the simplest ways 
of determining the rotation is by fitting a planar 

surface to the LiDAR dataset block and then rotating 
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that planar surface to become completely 

horizontal.  

 
Figure 5.  LiDAR data acquisition and processing 

workflow block diagram. 

The Fit Plane tool in Cloud Compare software 
was used for each data block at the cliff area to 

obtain the rotation’s magnitude and direction. The 

matrix that would make the fitted plane horizontal 
(normal towards Z+) can be found in the console 

area of CloudCompare after running the Fit Plane 
tool. The resulting rotation parameters were in the 

form of a 4x4 transformation matrix, which can be 

copied into the computer clipboard or exported into 
a text file for later use to restore the data block to 

its original position by using the inverse of the 
transformation matrix once the automated ground 

classification is completed. After the rotation 
parameters are determined by using the Fit Plane 

tool in CloudCompare, the subset of the LiDAR 

dataset can then be rotated with the center of the 
data segment as the point of origin. Using the Apply 

Transformation tool in CloudCompare, a 
transformation filter that applied an arbitrary 

rotation around a vector and represented as a 4x4 

matrix to each XYZ triplet, blocks of LiDAR data can 
be rotated and ready to be processed further by the 

2.5-D ground point classifier algorithm. 
The 4x4 transformation matrix M can be 

expressed as a product of a rotation matrix R and 

translation matrix T, as shown in Formula 2.  

𝑀 = [

𝑅11 𝑅12

𝑅32 𝑅22

𝑅13 0
𝑅23 0

𝑅31 𝑅32

0 0
𝑅33 0

0 1

] [

1 0 0 𝑇𝑥

0 1 0 𝑇𝑦

0 0 1 𝑇𝑧

0 0 0 1

]………….(2) 

The rotated coordinates for each point within the 
point cloud can be calculated by using Formula 3 
as follows: 

[

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

] = 𝑀 [ 

𝑥
𝑦
𝑧
1

 ]………………………………….…………….(3) 

where M is the transformation matrix; xc, yc, and zc 

is the rotated coordinates of the point cloud; and x, 

y, z is the original coordinates. The elements of 
basic rotation matrix R around angle θ about an axis 

defined by a unit vector (l,m,n) can be expressed as 
the following set of equations (Szymanski, 1989): 

𝑅11 = 𝑙𝑙(1 − cos 𝜃) + cos 𝜃 
𝑅12 = 𝑚𝑙(1 − cos 𝜃) − 𝑛sin 𝜃 
𝑅13 = 𝑛𝑙(1 − cos 𝜃) + 𝑚sin 𝜃 
𝑅21 = 𝑙𝑚(1 − cos 𝜃) + 𝑛sin 𝜃 
𝑅22 = 𝑚𝑚(1 − cos 𝜃) + cos 𝜃 
𝑅23 = 𝑛𝑚(1 − cos 𝜃) − 𝑙sin 𝜃 
𝑅31 = 𝑙𝑛(1 − cos 𝜃) − 𝑚sin 𝜃 
𝑅32 = 𝑚𝑛(1 − cos 𝜃) + 𝑙sin 𝜃 
𝑅33 = 𝑛𝑛(1 − cos 𝜃) + cos 𝜃 

 
(a) 

 
(b) 

Figure 6. The original, unrotated dataset will have 
misclassified points due to overhanging parts 
(a); the rotated dataset will have correct 
ground classification since all overlapping 
terrain surfaces are eliminated temporarily 
during the classification process (b). 
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Rotating the whole LiDAR dataset for each 

study area may not be effective because 1) the 
variation of the terrain inclination over the entire 

width of the dataset was too much; consequently, 
the planar fitting algorithm will not reflect the 

inclination within localized surfaces, especially cliff 

surfaces; therefore, the resulting rotation matrix 
may not be sufficient to rotate the entire dataset 

and get proper 2.5-D space surface for all surfaces 
in the dataset; 2) large dataset will increase the 

requirement of free computer memory, the dense 

nature of LiDAR dataset collected using UAV tend to 
exhaust computer memory when the size is not 

appropriately managed. Hence, in most cases, it is 
necessary to compartmentalize the LiDAR dataset 

into smaller blocks to accommodate local terrain 
variation and to reduce computer memory 

requirement. These compartments or data blocks 

will be rotated individually to ensure every segment 
can be processed in 2.5-D space. The ground 

classification is done by employing the SMRF ground 
point filter in PDAL software suite (Bell et al., 2020) 

for each data segment. As soon as the automated 

ground point classification is completed in PDAL, an 
inverse rotation using the 4x4 transformation matrix 

that was saved previously will then performed to 
each data segment to return the LiDAR point cloud 
to its original position using Cloud Compare. 

Point Classification Editing and Point Cloud 

Thinning 

Based on visual inspection of the point cloud, 
it is apparent that the result of automated ground 

point cloud classification still contains artifacts or 
remnants of non-ground objects such as tree trunks 

or foliage, especially along the ridges and crests in 

the cliff surface. Manual intervention is needed by 
reclassifying such artifacts as noise points or other 

non-ground points. The manual reclassification was 
done by performing multiple visualizations of small 

cross-sections of a portion of the cliff to interpret 

ground and non-ground points and remove the 
artifacts manually. Professionally trained GIS data 

processing operators used the free Lasview module 
of the LASTools software (Isenburg, 2020) to 

perform this manual reclassification. Once the 
remaining artifacts were removed, a point-thinning 

algorithm was executed to get a thinned, uniform-

density point cloud. The thinned point cloud will 
provide a more suitable surface for the contour line 

generation algorithm, which will help minimize the 
effort needed to edit the resulting contour lines 

manually. A voxel-based point-thinning algorithm in 

the PDAL software suite (voxel centroid-nearest 
neighbor) was used in this case study. 

Three-dimensional Contour Line Generation 

The Segmentation tool in CloudCompare 

software was used to generate contour lines with a 

specific interval. By employing the Slice function in 

the Segmentation tool followed by generation of the 
contour lines along with the horizontal slices, the 

outline of each horizontal cross-section of the LiDAR 
dataset can be produced, effectively creating the 

contour lines in three-dimension. The resulting 

contour lines were then manually edited to remove 
superfluous lines, to join fragmented contour lines, 

and to connect the contour lines of the cliff face to 
the contour lines of the inland topography. Contour 

lines in a digital three-dimensional topographic map 

will never cross each other since they will always be 
on different elevation levels from the reference 

datum. When viewed from the top, digital three-
dimensional contour lines will appear similar to 

conventional paper-based topographic maps, where 
contour lines are not supposed to touch, overlap, or 

cross, except in certain rare instances such as if 

there is a vertical or overhanging cliff (Deline et al., 
2015). In the case of a vertical cliff, the contour 

lines will appear to merge because they are right on 
top of each other when viewed from above, and in 

the case of an overhang, the contour lines will cross 

each other. The overall workflow of this case study 
is illustrated in Figure 5.  

While the three-dimensional contour lines can 
convey the shape of the surface very well, Portion 
de Ciel Visible (PCV) algorithm, a point-and-mesh-
shading algorithm which was based on an algorithm 

developed by Tarini et al., (2003), was used to 

provide a more compelling simulated visualization of 
the cliff surface. The PCV algorithm simulates the 

natural illumination of the scene as if there were 
spotlights sampled all over a hemisphere or a 

sphere, while the point cloud is lying at the center 

of this sphere, and this algorithm is available as one 
of the plug-ins in Cloud Compare software.  

RESULTS AND DISCUSSION 

In this case study, two sets of results were 

produced: 1) the three-dimensional contour lines as 
the primary product and 2) the PCV-shaded surface 

made by the ground point cloud to qualitatively 
gauge the completeness of the bare terrain 

representation in the classified data. The cliff face’s 

visualization reconstructed using the ground points 
indicated that the cliff face, including the recesses, 

has been successfully preserved. A few deep 
alcoves were not scanned thoroughly by the LiDAR 

due to its location, but overall the cliff was 
reconstructed quite well, with almost no artifacts 

remaining. In Site A, some recessed areas at the 

bottom of the cliff near the ocean surface could not 
be adequately modeled due to inadequate LiDAR 
coverage in such a location. 

LiDAR Accuracy Evaluation 

A total of 140 ground test points were surveyed 
on both locations to provide reference data for the 
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accuracy evaluation in this case study. However, 

due to the inherent difficulty in measuring ground 
test points on the cliff wall, the test points were only 

placed on the cliff’s top portion with a reasonable 
incline to ensure safe access by the surveying team. 

No test points were measured on the vertical wall 

and any overhanging surfaces. The root mean 
square error is used as a measure of LiDAR survey 

accuracy, which can be calculated based on 
Formula 4 and Formula 5 presented below: 

𝑅𝑀𝑆𝑒𝑧 =  √∑
(𝑧𝑙𝑎𝑠𝑒𝑟−𝑧𝑡𝑒𝑠𝑡)2

𝑛

𝑛
𝑖=1 ……………………………(4) 

where RMSez is the root mean square error, zlaser is 
the elevation of the terrain based on the laser 

ground points, ztest is the spot elevation of the 

terrain based on the terrestrial survey, and n is the 
number of observations. This formula can then be 

used to derive the linear error with 90% confidence 
(LE90) value by using the following equation (Badan 
Informasi Geospasial, 2014): 

𝐿𝐸90 = 1.6499 × 𝑅𝑀𝑆𝑒𝑧……………………………….(5) 

Based on the ground test points distributed on 
the bare area at the top side of the cliffs, vertical 

accuracy of 4.6 cm in RMSe was reported at site A, 
and vertical accuracy of 5.2 cm in RMSe was 

reported at site B, which translates to 6.9 cm of 

LE90 and 8.6 cm of LE90, respectively, according to 
Formula 5. This finding is on a par with the 

expected accuracy of the laser scanner (Phoenix 
LiDAR Systems, 2019) and well within the 

specification for a large-scale map in Indonesia on 

1:1,000 scale maps, which limit the vertical error to 
0.2 meter LE90, as defined by Indonesia’s 

Geospatial Information Agency recent regulation on 
map accuracy standards (Badan Informasi 

Geospasial, 2014).  
Only the vertical accuracy was evaluated in this 

case study. The horizontal accuracy was not 

evaluated due to the following factors: 1) no 
sufficient contrast provided by the laser intensity 

image to distinguish surficial features, 2) at the 
study area, there were no visibly identifiable angular 

features that can be detected in 3-D, such as 

building roofs, walls, and pavements edges, 3) time 
and budgeting constraints prevent the use of laser-

reflective markers on ground test points to highlight 
their locations in the laser intensity image. 

Nevertheless, some of the ground test points were 
placed on top of the cliff ledges and the bottom of 

steep inclines to help point out any gross horizontal 

errors. In this case study, data from both areas do 
not show any gross horizontal positional errors. 

Assessment of the Cliff Surface and Contour 

Lines 

Visual examination of the contour lines 
produced by the CloudCompare segmentation tool 

shown no artifacts leftover from non-ground points 

due to vegetation and overgrowths. Note that some 
of the contour lines presented in Figure 7 and 

Figure 8 may appear to be overlapping with each 
other due to overhanging cliff faces. The contour 

lines flow naturally throughout the cliff and the 

overhangs, with a minimum amount of data gaps; 
however, the contour lines were fragmented and 

split in various locations, which requires a manual 
join using software to edit contour line shapefiles, 

in this case, QGIS (QGIS.org, 2020) was used, to 

improve the contour lines to adhere to cartographic 
standards. 

 
Figure 7. Contour lines of the cliff area at site A.  

 
Figure 8. Contour lines of the cliff area at site B.  

The edited contour lines of the cliff can then be 

joined with contour lines of the regular dataset from 
the main body of terrain to form a contiguous block 

of contour lines. Two sets of PCV-shaded 
visualization of the cliff area being studied were 

produced using CloudCompare software to assist in 
the qualitative assessment of the ground-filtering 

process. The oblique-angle visualization of the Site 

A is presented in Figure 9, and the visualization for 
Site B is presented in Figure 10. These 

visualizations can be rotated in CloudCompare to 
further examine the fidelity of the cliff surface 

reconstruction. 

Employing the existing algorithm to classify 
ground points from the LiDAR dataset using the 

SMRF algorithm combined with the dataset’s 
temporary rotation during algorithm execution has 

produced a satisfactory result. Manual efforts will 
still be needed to do the following steps: 1) 

orthogonally delineating approximate cliff face to 

derive segments used to rotate LiDAR points, 2) 
cleaning up the classified point cloud to remove 

artifacts from the automated classification 
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algorithm, and 3) editing and cleaning up the 

resulting contour lines to achieve acceptable 
standards in cartography.  

 
(a) 

 
(b) 

Figure 9.  Perspective view of the raw, unclassified 
point cloud (a) compared to the classified 
ground point cloud (b) in site A. 

 
(a) 

 
(b) 

Figure 10.  Perspective view of the raw, unclassified 
point cloud (a) compared to the classified 

ground point cloud (b) in site B. 

The contour lines from the LiDAR dataset 
generated by slicing the point cloud in Z direction 

using CloudCompare software required a significant 

effort for cleaning up to meet cartographic 
standards. A more robust contouring tool that can 

generate more consistent contour lines from a 

particular point cloud class from the LiDAR dataset 
will reduce the person-hour involved. 

In this case study, simple polygons were drawn 
manually along the approximated cliff face to split 

LiDAR dataset into smaller blocks, and then the 

rotation to an optimum horizontal plane for 2.5-D 
ground classification is done by performing a two-

dimensional planar fitting to the LiDAR data block 
using CloudCompare. For smaller datasets like in 

this case study, such approximation is considered 

practical enough, but for larger datasets, a better 
procedural method in identifying rotation magnitude 

and direction in the form of 4x4 transformation 
matrices needs to be established.  

Mapping the difficult-to-reach areas, such as 
the alcoves and deep recesses close to the sea 

surface, is proven to be problematic since the 

intrinsic risk associated with flying UAV close to the 
rough sea surface and the inability of the pilot to 

maintain a safe distance to the cliff face when no 
line of sight is possible. When no sufficient LiDAR 

data was acquired over such areas, manual 

interpretation has to be performed to be able to 
continue the contour lines crossing the area with 

data void. The small number of laser points in such 
locations was often get discarded in the noise-

cleaning algorithm step. This predicament could be 
alleviated by employing a water-resistant UAV with 

a more advanced positioning system so that a more 

precise flight and a closer laser scanning to both the 
cliff and sea surface can be performed; hence more 

laser pulses can strike the surface of alcoves and 

recesses. 

CONCLUSION 

Airborne LiDAR survey using a UAV platform 

followed by data processing employing dataset 
rotation techniques prior to automatic ground point 

classification with SMRF algorithm has provided 

satisfactory results in capturing three-dimensional 
topographic maps of cliff surfaces in the Pecatu 

region in Bali. The cliff surfaces in both study areas 
were reconstructed successfully with sufficient 

accuracy for topographic mapping at 1:1,000 scale, 
and the final result can be presented in the form of 
three-dimensional contour lines. 
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