EVALUASI TINGKAT AKURASI KLASIFIKASI HABITAT BENTIK PERAIRAN DANGKAL PADA PERBEDAAN JUMLAH KELAS MENGUNAKAN CITRA SATELIT RESOLUSI TINGGI

STUDI KASUS: PULAU SEBARU BESAR, KEPULAUAN SERIBU

Authors

  • Ayub Sugara Program Studi Teknologi Kelautan, Sekolah Pascasarjana, IPB, Bogor
  • Vincentius P. Siregar Departemen Ilmu dan Teknologi Kelautan, FPIK-IPB, Bogor
  • Syamsul B. Agus Departemen Ilmu dan Teknologi Kelautan, FPIK-IPB, Bogor

Keywords:

citra Worldview-2, habitat bentik, Pulau Sebaru Besar

Abstract

Pulau Sebaru Besar merupakan salah satu pulau yang terdapat di bagian utara Kepulauan Seribu yang memliki keanekaragaman habitat perairan laut dangkal. Citra resolusi tinggi diintegrasikan dengan data observasi lapang dapat menjadi alternatif sumber informasi terkait habitat bentik perairan laut dangkal. Penelitian ini bertujuan untuk melakukan evaluasi akurasi hasil klasifikasi habitat bentik perairan dangkal di Pulau Sebaru Besar Kepulauan Seribu menggunakan citra WorldView-2 dengan penerapan 9 dan 7 kelas serta melakukan uji akurasi hasil klasifikasi. Data citra WorldView-2 yang digunakan merupakan salah satu citra resolusi tinggi dengan resolusi spasial 1,84 x 1,84 meter2 yang diakuisisi pada tanggal 7 Mei 2018. Survei lapang habitat bentik perairan dangkal dilakukan pada tanggal 10-12 Mei 2018 dan 09-10 Desember 2018 dengan teknik foto kuadrat yang menghasilkan sampelsampel sebanyak 159 titik. Persentase tutupan habitat setiap foto kuadrat dianalisis dengan perangkat lunak Coral Point Count with Excel extensions (CPCe). Berdasarkan hasil penelitian akurasi klasifikasi pemetaan habitat bentik perairan dangkal untuk 9 dan 7 kelas dihasilkan akurasi sebesar 63,2% dan 67,5% dengan algoritma Maximum Likelihood Classification (MLC). Habitat bentik perairan dangkal dapat dipetakan dengan baik, sehingga bisa menjadi masukan basis data informasi untuk pengelola Taman Nasional Kepulauan Seribu (TNKpS) kaitannya dalam usaha monitoring habitat bentik terkhusus terumbu karang dan upaya konservasi habitat perairan laut dangkal.

References

Andréfouët, S., Kramer, P., Torres-Pulliza, D., Joyce, K. E., Hochberg, E. J., Garza-Pérez, R., … Muller-Karger, F. E. (2003). Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 88(1–2), 128–143. https://doi.org/10.1016/j.rse.2003.04.005

BIG. (2017). Peraturan Badan Informasi Geospasial. Peraturan Badan Informasi Geospasial Nomor 7 Tahun 2017 Tentang Kompetensi Kerja Di Bidang Informasi Geospasial, 53(9), 10.

Chollett, I., & Mumby, P. J. (2012). Predicting the distribution of Montastraea reefs using wave exposure. Coral Reefs, 31(2), 493–503. https://doi.org/10.1007/s00338-011-0867-7

Collin, A., & Hench, J. L. (2012). Towards deeper measurements of tropical reefscape structure using the WorldVsiew-2 spaceborne sensor. Remote Sensing, 4(5), 1425–1447. https://doi.org/10.3390/rs4051425

Congalton, R.G. & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. In The Photogrammetric Record, 25. https://doi.org/10.1111/j.14779730.2010.00574_2.x

Digital Globe. (2010). The Benefits of the Eight Spectral Bands Of WorldView-2. White Paper, 12.

English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical marine resources. Second edition. Australian Institute of Marine Sciences ISBN 0, 642(2594). 4.

Eugenio, F., Marcello, J., Martin, J., & Rodríguez-Esparragón, D. (2017). Benthic habitat mapping using multispectral high-resolution imagery: Evaluation of shallow water atmospheric correction techniques. Sensors, 17(11). 2639. https://doi.org/10.3390/s17112639

Green, E., Mumbay, P.,Edwards, A., & Clark, C. (2000). Remote Sensing: Handbook for Tropical Coastal Management. United Nations Educational, Scientific and Cultural Organization.

Knudby, A., Roelfsema, C., Lyons, M., Phinn, S., & Jupiter, S. (2011). Mapping fish community variables by Integrating field and satellite data, object-based image analysis and modeling in a traditional Fijian fisheries management area. Remote Sensing, 3(3), 460–483. https://doi.org/10.3390/rs3030460

Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences, 32(9), 1259–1269. https://doi.org/10.1016/j.cageo.2005.11.009

Lyons, M., Phinn, S., & Roelfsema, C. (2011). Integrating Quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote Sensing, 3(1), 42–64. https://doi.org/10.3390/rs3010042

Lyzenga, D. R. (1981). Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and landsat data. International Journal of Remote Sensing, 2(1), 71–82. https://doi.org/10.1080/01431168108948342

Mahiny, A. S., & Turner, B. J. (2007). A Comparison of Four Common Atmospheric Correction Methods. Photogrametric Engineering & Remote Sensing, 73(4), 361–368.

Mastu, L. O. K., Nababan, B., & Panjaitan, J. P. (2018). Pemetaan Habitat Bentik Berbasis Objek Menggunakan Citra Sentinel-2 Di Perairan Pulau Wangi-Wangi Kabupaten Wakatobi. Jurnal Ilmu dan Teknologi Kelautan Tropis, 10(2), 381-396. https://doi.org/10.29244/jitkt.v10i2.21039

Phinn, S. R., Roelfsema, C. M., & Mumby, P. J. (2012). Multi-Scale, Object- Based Image Analysis for Mapping Geomorphic and Ecological Zones on Coral Reefs. International Journal of Remote Sensing, 33(12), 3768-3797.

Purkis, S. J., Graham, N. A. J., & Riegl, B. M. (2008). Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs, 27(1), 167–178. https://doi.org/10.1007/s00338-007-0306-y

Republik Indonesia. (2007). Undang-Undang Republik Indonesia Nomor 27 Tahun 2007. , Pengelolaan Wilayah Pesisir dan Pulau-Pulau Kecil Bab 1 Pasal 1.

Richards, J. A., & Jia, X. (2013). Remote Sensing Digital Image Analysis: an Introduction Fourth Edition. Springer. https://doi.org/10.1007/3-540-29711-1

Roelfsema, C., Kovacs, E., Ortiz, J. C., Wolff, N. H., Callaghan, D., Wettle, M., … Phinn, S. (2018). Coral reef habitat mapping: A combination of object-based image analysis and ecological modelling. Remote Sensing of Environment, 208, 27–41. https://doi.org/10.1016/j.rse.2018.02.005

Roelfsema, C., & Phinn, S. (2008). Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji. Remote Sensing of Inland, Coastal, and Oceanic Waters, 7150, 71500F. International Society for Optic and Photonics. https://doi.org/10.1117/12.804806

Roelfsema, C., Phinn, S., Jupiter, S., Comley, J., & Albert, S. (2013). Mapping coral reefs at reef to reef-system scales, 10s-1000s km2, using object-based image analysis. International Journal of Remote Sensing, 34(18), 6367–6388. https://doi.org/10.1080/01431161.2013.800660

Selamat, M. B., Jaya, I., Siregar, V. P., & Hestirianoto, T. (2012). Aplikasi Citra Quickbird untuk Pemetaan 3D Substrat Dasar di Gusung Karang. Jurnal Geomatika, 18(2), 95–106. Retrieved from http://jurnal.big.go.id/index.php/GM/article/view/183

Siregar, V. P. (2010). Pemetaan substrat dasar perairan dangkal karang congkak dan lebar kepulauan seribu menggunakan citra satelit quick bird. 2(1), 19–30.

Teillet, P. M. (1986). Image correction for radiometric effects in remote sensing. International Journal of Remote Sensing, 7(12), 1637–1651.

Wahidin, N., Siregar, V. P., Nababan, B., Jaya, I., & Wouthuyzen, S. (2014). Deteksi Perubahan Habitat Terumbu Karang Menggunakan Citra Landsat di Pulau Morotai Provinsi Maluku Utara. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 6(2), 507–524.

Downloads

Published

2024-04-24

How to Cite

Ayub Sugara, Vincentius P. Siregar, & Syamsul B. Agus. (2024). EVALUASI TINGKAT AKURASI KLASIFIKASI HABITAT BENTIK PERAIRAN DANGKAL PADA PERBEDAAN JUMLAH KELAS MENGUNAKAN CITRA SATELIT RESOLUSI TINGGI: STUDI KASUS: PULAU SEBARU BESAR, KEPULAUAN SERIBU . ajalah lmiah lobe, 22(2), 113–120. etrieved from https://jurnal.big.go.id/GL/article/view/122